Review
BibTex RIS Cite

Su ürünleri yetiştiriciliğinde postbiyotik ve paraprobiyotiklerin yeri

Year 2023, Volume: 5 Issue: 1, 26 - 36, 25.10.2023
https://doi.org/10.51756/marlife.1287544

Abstract

Su ürünleri yetiştiriciliğinde, antibiyotiklere alternatif olarak çevre dostu yem katkı maddelerinin (probiyotik, prebiyotik, sinbiyotik) kullanımı son yıllarda hızla artmaktadır. Yeterli miktarlarda uygulandığında konakçıya sağlık açısından fayda sağlayan canlı mikroorganizmalar olarak kabul edilen probiyotik ürünlerde, üretim aşamaları sırasında ve üretimden sonra ölü hücreler ile karşılaşılabilmektedir. Buna rağmen konakçıda faydalı etkiler gösteriyor olmaları cansız mikrobiyal hücreler veya hücrelerin parçalanmasıyla oluşan hücre bileşenlerinin de etkili olabileceği ‘postbiyotik ve paraprobiyotik’ olarak ifade edilen tanımların kullanılmasını beraberinde getirmiştir. Bu derlemede, postbiyotik ve paraprobiyotik kavramlarının alternatif tanımları, postbiyotik ve paraprobiyotiklerin elde edilme yöntemleri ve su ürünleri yetiştiriciliğinde kullanım alanlarına dikkat çekilmiştir.

References

  • Aggarwal, S., Sabharwal, V., Kaushik, P., Joshi, A., Aayushi, A., & Suri, M. (2022). Postbiotics: From emerging concept to application. Frontiers in Sustainable Food Systems, 6, 887642. https://doi.org/10.3389/fsufs.2022.887642
  • Aghebati-Maleki, L., Hasannezhad, P., Abbasi, A., & Khani, N. (2021). Antibacterial, antiviral, antioxidant, and anticancer activities of postbiotics: a review of mechanisms and therapeutic perspectives. Biointerface Research in Applied Chemistry, 12(2), 2629-2645. https://doi.org/10.33263/BRIAC122.26292645
  • Aldy Mulyadin, W., Yuhana, M., & Wahjuningrum, D. (2021). Growth performance, immune response, and resistance of Nile tilapia fed paraprobiotic Bacillus sp. NP5 against Streptococcus agalactiae infection Jurnal Akuakultur Indonesia, 20(1), 34-46. https://doi.org/10.19027/jai.20.1.34-46
  • Aly, S. M., Ahmed, Y. A. G., Ghareeb, A. A. A., & Mohamed, M. F. (2008). Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish & Shellfish İmmunology, 25, 128-136. https://doi.org/10.1016/j.fsi.2008.03.013
  • Amenyogbe, E., Chen, G., Wang, Z., Huang, J.-S., Huang, B., and Li, H.-J. (2020). The exploitation of probiotics, prebiotics and synbiotics in aquaculture: present study, limitations and future directions: a review. Aquaculture International, 28, 1017–1041. https://doi.org/10.1007/s10499-020-00509-0
  • Ang, C. Y., Sano, M., Dan, S., Leelakriangsak, M., & Lal, T. M. (2020). Postbiotics applications as infectious disease control agent in aquaculture. Biocontrol Science, 25, 1-7. https://doi.org/10.4265/bio.25.1
  • Awad, E., von Wright, A., Austin, B. (2022). Quality, Safety and Regulatory Issues of Probiotics. In: Austin, B., Sharifuzzaman, S. (eds) Probiotics in Aquaculture. Springer, Cham, (pp. 285-298). https://doi.org/10.1007/978-3-030-98621-6_14
  • Aydın, F., & Çek-Yalnız, Ş. (2019) Effect of probiotics on reproductive performance of fish. Natural and Engineering Sciences, 4(2), 153-162. https://doi.org/10.28978/nesciences.567113
  • Banerjee, G., & Ray, A. K. (2017). The advancement of probiotics research and its application in fish farming industries. Research in Veterinary Science, 115, 66-77. https://doi.org/10.1016/j.rvsc.2017.01.016
  • Barros, C. P., Guimara ̃ es, J. T., Esmerino, E. A., Duarte, M. C. KH., Silva, M. C., Ramon Silva, R., Ferreira B. M., Sant’Ana, A. S., Freitas, M. Q., & Cruz, A. G. (2020). Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Current Opinion in Food Science, 32, 1-8. https://doi.org/10.1016/j.cofs.2019.12.003
  • Barros, C. P., Pires, R. P., Guimarães, J. T., Abud, Y. K., Almada, C. N., Pimentel, T. C., ... & Cruz, A. G. (2021). Ohmic heating as a method of obtaining paraprobiotics: Impacts on cell structure and viability by flow cytometry. Food Research International, 140, 110061. https://doi.org/10.1016/j.foodres.2020.110061
  • Batista, V. L., De Jesus, L. C. L., Tavares, L. M., Barroso, F. L. A., Fernandes, L. J. D. S., Freitas, A. D. S., & Azevedo, V. (2022). Paraprobiotics and Postbiotics of Lactobacillus delbrueckii CIDCA 133 Mitigate 5-FU-Induced Intestinal Inflammation. Microorganisms, 10, 1418. https://doi.org/10.3390/microorganisms10071418
  • Bhogoju, S., & Nahashon, S. (2022). Recent advances in probiotic application in animal health and nutrition: a review. Agriculture, 12(2), 304. https://doi.org/10.3390/agriculture12020304
  • Bouwmeester, M. M., Goedknegt, M. A., Poulin, R., & Thieltges, D. W. (2021). Collateral diseases: aquaculture impacts on wildlife infections. Journal of Applied Ecology, 58, 453-464. https://doi.org/10.1111/1365-2664.13775
  • Burridge, L., Weis, J. S., Cabello, F., Pizarro, J., & Bostick, K. (2010). Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture, 306, 7-23. http://dx.doi.org/10.1016/j.aquaculture.2010.05.020
  • Butera, A., Gallo, S., Pascadopoli, M., Maiorani, C., Milone, A., Alovisi, M., & Scribante, A. (2022). Paraprobiotics in non-surgical periodontal therapy: Clinical and microbiological aspects in a 6-month follow-up domiciliary protocol for oral hygiene. Microorganisms, 10, 337. https://doi.org/10.3390/microorganisms10020337
  • Butt, U. D., Lin, N., Akhter, N., Siddiqui, T., Li, S., & Wu, B. (2021). Overview of the latest developments in the role of probiotics, prebiotics and synbiotics in shrimp aquaculture. Fish & Shellfish Immunology, 114, 263-281. https://doi.org/10.1016/j.fsi.2021.05.003
  • Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental Microbiology, 8, 1137-1144. https://doi.org/10.1111/j.1462-2920.2006.01054.x
  • Carnevali, O., de Vivo, L., Sulpizio, R., Gioacchini, G., Olivotto, I., Silvi, S., & Cresci, A. (2006). Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax, L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture, 258, 430-438. https://doi.org/10.1016/j.aquaculture.2006.04.025
  • Cerezo, I. M., Domínguez-Maqueda, M., Carmen Balebona, M., Martínez-Manzanares, E., & Arijo, S. (2022). Application Methods of Probiotics and Options. In Probiotics in Aquaculture (pp. 25-52). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-98621-6_3
  • Cuevas-González, P. F., Liceaga, A. M., & Aguilar-Toalá, J. E. (2020). Postbiotics and paraprobiotics: From concepts to applications. Food Research İnternational, 136, 109502. https://doi.org/10.1016/j.foodres.2020.109502
  • da Silva Vale, A., de Melo Pereira, G. V., de Oliveira, A. C., de Carvalho Neto, D. P., Herrmann, L. W., Karp, S. G., & Soccol, C. R. (2023). Production, Formulation, and Application of Postbiotics in the Treatment of Skin Conditions. Fermentation, 9, 264. https://doi.org/10.3390/fermentation9030264
  • Dahiya, D., & Nigam, P. S. (2023). Antibiotic-therapy-induced gut dysbiosis affecting gut microbiota-brain Axis and cognition: restoration by intake of probiotics and synbiotics. International Journal of Molecular Sciences, 24, 3074. https://doi.org/10.3390/ijms24043074
  • Dang, D. X., Choi, S. Y., Choi, Y. J., Lee, J. H., Castex, M., Chevaux, E., Saornil, D., de Laguna, F.B., Jimenez, G., & Kim, I. H. (2023). Probiotic, Paraprobiotic, and Hydrolyzed Yeast Mixture Supplementation Has Comparable Effects to Zinc Oxide in Improving Growth Performance and Ameliorating Post-weaning Diarrhea in Weaned Piglets. Probiotics and Antimicrobial Proteins, 1-10. https://doi.org/10.1007/s12602-022-10008-8
  • Danladi, Y., Loh, T. C., Foo, H. L., Akit, H., Md Tamrin, N. A., & Naeem Azizi, M. (2022). Effects of postbiotics and paraprobiotics as replacements for antibiotics on growth performance, carcass characteristics, small intestine histomorphology, immune status and hepatic growth gene expression in broiler chickens. Animals, 12, 917. https://doi.org/10.3390%2Fani12070917
  • Das, A., Nakhro, K., Chowdhury S., & Kamilya, D. (2013) Effects of potential probiotic Bacillus amyloliquifaciens FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla). Fish & Shellfish Immunology, 35, 1547–1553. https://doi.org/10.1016/j.fsi.2013.08.022
  • Dash, G., Raman, R. P., Prasad, K. P., Makesh, M., Pradeep, M. A., & Sen, S. (2015). Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Fish & Shellfish Immunology, 43, 167-174. https://doi.org/10.1016/j.fsi.2014.12.007
  • Dawood, M. A., Koshio, S., Ishikawa, M., & Yokoyama, S. (2015). Effects of heat killed Lactobacillus plantarum (LP20) supplemental diets on growth performance, stress resistance and immune response of red sea bream, Pagrus major. Aquaculture, 442, 29-36. https://doi.org/10.1016/j.aquaculture.2015.02.005
  • Dawood, M. A., Koshio, S., & Esteban, M. Á. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Reviews in Aquaculture, 10, 950-974. https://doi.org/10.1111/raq.12209
  • de Almada, C. N., Almada, C. N., Martinez, R. C., & Sant'Ana, A. S. (2016). Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends in Food Science and Technology, 58, 96-114. https://doi.org/10.1016/j.tifs.2016.09.011
  • de Vrese, M., & Schrezenmeir, A. J. (2008). Probiotics, Prebiotics, and Synbiotics. In: Stahl, U., Donalies, U.E., Nevoigt, E. (eds) Food Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2008_097
  • del Valle, J. C., María Cecilia Bonadero, M. C., & Fernández-Gimenez, A. V. (2023). "Saccharomyces cerevisiae as probiotic, prebiotic, synbiotic, postbiotics and parabiotics in aquaculture: An overview." Aquaculture, 569, 739342. https://doi.org/10.1016/j.aquaculture.2023.739342
  • Deng, D., Mei, C., Mai, K., Tan, B. P., Ai, Q., & Ma, H. (2013). Effects of a yeast‐based additive on growth and immune responses of white shrimp, Litopenaeus vannamei (B oone, 1931), and aquaculture environment. Aquaculture Research, 44(9), 1348-1357. https://doi.org/10.1111/j.1365-2109.2012.03139.x
  • Deshpande, G., Athalye-Jape, G., & Patole, S. (2018). Para-probiotics for preterm neonates-The next frontier. Nutrients, 10, 871. https://doi.org/10.3390/nu10070871
  • Diwan, A. D., Harke, S. N., & Panche, A. N. (2023). Host-microbiome interaction in fish and shellfish: An overview. Fish and Shellfish Immunology Reports, 4, 100091. https://doi.org/10.1016/j.fsirep.2023.100091
  • Duarte, M., Oliveira, A. L., Oliveira, C., Pintado, M., Amaro, A., & Madureira, A. R. (2022). Current postbiotics in the cosmetic market-an update and development opportunities. Applied Microbiology and Biotechnology, 106, 5879-5891. https://doi.org/10.1007/s00253-022-12116-5
  • FAO, (2020). The state of world fisheries and aquaculture 2020. Sustainability in action. (Rome: Food and Agriculture Organization of the United Nations). https://doi.org./10.4060/ca9229en
  • FAO/WHO, (2002). Guidelines for the Evaluation of Probiotics in Food. Paris: FAO, 1–11.
  • Fijan, S. (2014). Microorganisms with claimed probiotic properties: an overview of recent literature. International Journal of Environmental Research and Public Health, 11, 4745-4767. https://doi.org/10.3390%2Fijerph110504745
  • Fiore, W., Arioli, S., & Guglielmetti, S. (2020). The neglected microbial components of commercial probiotic formulations. Microorganisms, 8, 1177. https://doi.org/10.3390/microorganisms8081177
  • Goh, J. X. H., Tan, L. T. H., Law, J. W. F., Ser, H. L., Khaw, K. Y., Letchumanan, V. & Goh, B. H. (2022). Harnessing the potentialities of probiotics, prebiotics, synbiotics, paraprobiotics, and postbiotics for shrimp farming. Reviews in Aquaculture, 14: 1478-1557. https://doi.org/10.1111/raq.12659
  • Hai, N. V. (2015). The use of probiotics in aquaculture. Journal of applied microbiology, 119(4), 917-935. https://doi.org/10.1111/jam.12886
  • Hoseinifar, S. H., Ringø, E., Shenavar Masouleh, A. & Esteban, M. Á. (2016). Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: a review. Reviews in Aquaculture, 8, 89-102. https://doi.org/10.1111/raq.12082
  • Irianto, A., & Austin, B. (2002). Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases, 25, 333-342. https://doi.org/10.1046/j.1365-2761.2002.00375.x
  • Irianto, A., & Austin, B. (2003). Use of dead probiotic cells to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases, 26(1), 59-62. https://doi.org/10.1046/j.1365-2761.2003.00414.x
  • Jonesti, W. P., Prihatna, C., Natadiputri, G. H., Suwanto, A., & Meryandini, A. (2023). Tempeh flour as an excellent source of paraprobiotics. Biodiversitas Journal of Biological Diversity, 24, 1817-1823. https://doi.org/10.13057/biodiv/d240357
  • Kamilya, D., Baruah, A., Sangma, T., Chowdhury, S., & Pal, P. (2015). Inactivated probiotic bacteria stimulate cellular immune responses of catla, Catla catla (Hamilton) in vitro. Probiotics and Antimicrobial Proteins, 7, 101-106. https://doi.org/10.1007/s12602-015-9191-9
  • Kaya, D., Hersi, M. A., Genç, E., & Arslan, H. Ö. (2022). Symbiotic effect of Bacillus clausii and Galacto-oligosaccharide on growth and survival rates in red cherry shrimp (Neocaridina davidi). Marine and Life Sciences, 4(2), 146-151. https://doi.org/10.51756/marlife.1181522
  • Khan, M. A., Khan, S., & Miyan, K. (2011). Aquaculture as a food production system: A review. Biology and Medicine, 3(2), 291-302.
  • Khattab, Y. A., Shalaby, A. M., & Abdel-Rhman, A. (2005). Use of probiotic bacteria as growth promoters, anti-bacterial and their effects on physiological parameters of Oreochromis niloticus. Proceedings of international symposium on Nile Tilapia in aquaculture (Vol. 7, pp. 156-165).
  • Lahtinen, S. J., Boyle, R. J., Margolles, A., Frias, R., & Gueimonde, M. (2009). Safety assessment of probiotics. Prebiotics and Probiotics Science and Technology, 1193. https://doi.org/10.1007/978-0-387-79058-9_31
  • Li, S., & Tran, N. T. (2022). Paraprobiotics in Aquaculture. In: Austin, B., Sharifuzzaman, S. (eds) Probiotics in Aquaculture. Springer, Cham. https://doi.org/10.1007/978-3-030-98621-6_7
  • Lim, J. J., Jung, A. H., Suh, H. J., Choi, H. S., & Kim, H. (2022). Lactiplantibacillus plantarum K8-based paraprobiotics prevents obesity and obesity-induced inflammatory responses in high fat diet-fed mice. Food Research International, 155, 111066. https://doi.org/10.1016/j.foodres.2022.111066
  • Luna-González, Antonio, Vega-Carranza, Ana, S., Escamilla-Montes, Ruth, Fierro-Coronado, Jesús, A., Diarte-Plata, Genaro & García-Gutiérrez, C. (2023). Survival, Immune Response and Gut Microbiota in Litopenaeus vannamei Fed Synbiotics, Paraprobiotics, and Postbiotics and Challenged with Vibrio parahaemolyticus. http://doi.org/10.2139/ssrn.4314518
  • Luo, K., Tian, X., Wang, B., Wei, C., Wang, L., Zhang, S., Liu, Y., Li, T., & Dong, S. (2021). Evaluation of paraprobiotic applicability of Clostridium butyricum CBG01 in improving the growth performance, immune responses and disease resistance in Pacific white shrimp, Penaeus vannamei. Aquaculture, 544, 737041. https://doi.org/10.1016/j.aquaculture.2021.737041
  • Martín, R., & Langella, P. (2019). Emerging health concepts in the probiotics field: streamlining the definitions. Frontiers in Microbiology, 10, 1047. https://doi.org/10.3389%2Ffmicb.2019.01047
  • Meng, D., Hao, Q., Zhang, Q., Yu, Z., Liu, S., Yang, Y., Ran, C., Zhang, Z., & Zhou, Z. (2023). A compound of paraprobiotic and postbiotic derived from autochthonous microorganisms improved growth performance, epidermal mucus, liver and gut health and gut microbiota of common carp (Cyprinus carpio). Aquaculture, 570, 739378. https://doi.org/10.1016/j.aquaculture.2023.739378
  • Michels, M., Córneo, E., Rocha, L. B. G., Dias, R., Voytena, A. P. L., Rossetto, M., & Jesus, G. F. A. (2023). Paraprobiotics strains accelerate wound repair by stimulating re-epithelialization of NIH-3T3 cells, decreasing inflammatory response and oxidative stress. Archives of Microbiology, 205, 134. https://doi.org/10.1007/s00203-023-03469-0
  • Michels, M., Jesus, G. F. A., Voytena, A. P. L., Rossetto, M., Ramlov, F., Córneo, E., & Dal-Pizzol, F. (2022). Immunomodulatory effect of bifidobacterium, lactobacillus, and streptococcus strains of paraprobiotics in lipopolysaccharide-stimulated inflammatory responses in RAW-264.7 macrophages. Current Microbiology, 79, 1-14. https://doi.org/10.1007/s00284-021-02708-1
  • Moradi, M., Molaei, R., & Guimarães, J. T. (2021). A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme and Microbial Technology, 143, 109722. https://doi.org/10.1016/j.enzmictec.2020.109722
  • Nataraj, B. H., Ali, S. A., Behare, P. V., & Yadav, H. (2020). Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microbial Cell Factories, 19(1), 1-22. https://doi.org/10.1186/s12934-020-01426-w
  • Navarrete, P., Mardones, P., Opazo, R., Espejo, R., & Romero, J. (2008). Oxytetracycline treatment reduces bacterial diversity of intestinal microbiota of Atlantic salmon. Journal of Aquatic Animal Health, 20, 177-183. https://doi.org/10.1577/h07-043.1
  • Nawaz, A., Irshad, S., Hoseinifar, S. H., & Xiong, H. (2018). The functionality of prebiotics as immunostimulant: Evidences from trials on terrestrial and aquatic animals. Fish & Shellfish Immunology, 76, 272-278. https://doi.org/10.1016/j.fsi.2018.03.004
  • Nayak, S. K. (2010). Probiotics and immunity: a fish perspective. Fish & Shellfish Immunology, 29, 2-14. https://doi.org/10.1016/j.fsi.2010.02.017
  • Newaj‐Fyzul, A., Adesiyun, A. A., Mutani, A., Ramsubhag, A., Brunt, J., & Austin, B. (2007). Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). Journal of Applied Microbiology, 103(5), 1699-1706. https://doi.org/10.1111/j.1365-2672.2007.03402.x
  • Okeke, E. S., Chukwudozie, K. I., Nyaruaba, R., Ita, R. E., Oladipo, A., Ejeromedoghene, O., & Okoye, C. O. (2022). Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. Environmental Science and Pollution Research, 29, 69241-69274. https://doi.org/10.1007/s11356-022-22319-y
  • Oliveira, F. C., Soares, M. P., Oliveira, B. P. N., Pilarski, F., & de Campos, C. M. (2022). Dietary administration of Bacillus subtilis, inulin and its synbiotic combination improves growth and mitigates stress in experimentally infected Pseudoplatystoma reticulatum. Aquaculture Research, 53, 4256-4265. http://dx.doi.org/10.1111/are.15923
  • Pelusio, N. F., Parma, L., Volpe, E., Ciulli, S., Errani, F., Natale, S., De Cesare, A., Indio, V., Carcano, P., Mordenti, O., Gatta, P.P., & Bonaldo, A. (2023). Yeast-extracted nucleotides and nucleic acids as promising feed additives for European sea bass (Dicentrarchus labrax) juveniles. Frontiers in Marine Science, 10, 1145660. https://doi.org/10.3389/fmars.2023.1145660
  • Pérez-Sánchez, T., Mora-Sánchez, B., Vargas, A., & Balcázar, J. L. (2020). Changes in intestinal microbiota and disease resistance following dietary postbiotic supplementation in rainbow trout (Oncorhynchus mykiss). Microbial pathogenesis, 142, 104060. https://doi.org/10.1016/j.micpath.2020.104060
  • Puri, P., Sharma, J. G., & Singh, R. (2023). Biotherapeutic microbial supplementation for ameliorating fish health: developing trends in probiotics, prebiotics, and synbiotics use in finfish aquaculture. Animal Health Research Reviews, 23, 113-135. https://doi.org/10.1017/S1466252321000165
  • Rahman, Z., & Dandekar, M. P. (2023). Implication of paraprobiotics in age-associated gut dysbiosis and neurodegenerative diseases. NeuroMolecular Medicine, 25, 14-26. https://doi.org/10.1007/s12017-022-08722-1
  • Ravi, A. V., Musthafa, K. S., Jegathammbal, G., Kathiresan, K., & Pandian, S. K. (2007). Screening and evaluation of probiotics as a biocontrol agent against pathogenic Vibrios in marine aquaculture. Letters in Applied Microbiology, 45(2), 219-223. https://doi.org/10.1111/j.1472-765X.2007.02180.x
  • Rodríguez, J., Espinosa, Y., Echeverría, F., Cárdenas, G., Román, R., & Stern, S. (2007). Exposure to probiotics and β-1, 3/1, 6-glucans in larviculture modifies the immune response of Penaeus vannamei juveniles and both the survival to White Spot Syndrome Virus challenge and pond culture. Aquaculture, 273, 405-415. https://doi.org/10.1016/j.aquaculture.2007.10.042
  • Romero, J., Ringø, E., & Merrifield, D. L. (2014). The gut microbiota of fish. Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics, 75-100. https://doi.org/10.1002/9781118897263.ch4
  • Roy, N. C., Munni, M. J., Chowdhury, M. A., & Akther, K. R. (2022). Probiotic Supplements in Aquaculture: Latest Developments and Future Trends. In Biotechnological Advances in Aquaculture Health Management (pp. 345-367). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-5195-3_16
  • Saha, D., Khataniar, A., Singh, A. K., & Jha, A. N. (2023). Review of methods for encapsulation of nutraceutical compounds. In Nutraceuticals (pp. 127-156). Academic Press. https://doi.org/10.1016/B978-0-443-19193-0.00010-1
  • Salminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M., & Vinderola, G. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18, 649-667. https://doi.org/10.1038/s41575-021-00440-6
  • Sharma, N., Kang, D. K., Paik, H. D., & Park, Y. S. (2023). Beyond probiotics: a narrative review on an era of revolution. Food Science and Biotechnology, 32, 413-421. https://doi.org/10.1007/s10068-022-01212-x
  • Siddik, M. A., Howieson, J., Islam, S. M., & Fotedar, R. (2022). Synbiotic feed supplementation improves antioxidant response and innate immunity of juvenile barramundi, Lates calcarifer subjected to bacterial infection. Aquaculture, 552, 737965. https://doi.org/10.1016/j.aquaculture.2022.737965
  • Singh, S. T., Kamilya, D., Kheti, B., Bordoloi, B., & Parhi, J. (2017). Paraprobiotic preparation from Bacillus amyloliquefaciens FPTB16 modulates immune response and immune relevant gene expression in Catla catla (Hamilton, 1822). Fish & Shellfish Immunology, 66, 35-42. https://doi.org/10.1016/j.fsi.2017.05.005
  • Shripada, R., Gayatri, A.J., & Sanjay, P. (2020). Paraprobiotics. In Precision Medicine for Investigators, Practitioners and Providers; Faintuch, J., Faintuch, S., Eds.; Academic Press: Cambridge, MA, USA, pp. 39–49. https://doi.org/10.1016/B978-0-12-819178-1.00005-8
  • Song, S. K., Beck, B. R., Kim, D., Park, J., Kim, J., Kim, H. D., & Ringø, E. (2014). Prebiotics as immunostimulants in aquaculture: a review. Fish & Shellfish Immunology, 40, 40-48. https://doi.org/10.1016/j.fsi.2014.06.016
  • Song, S., Jeong, A., Lim, J., Kim, B. K., Park, D. J., & Oh, S. (2023). Lactiplantibacillus plantarum L67 probiotics vs paraprobiotics for reducing pro‐inflammatory responses in colitis mice. International Journal of Dairy Technology, 76, 168-177. https://doi.org/10.1111/1471-0307.12918
  • Sørum, H. (2005). Antimicrobial drug resistance in fish pathogens. Antimicrobial Resistance in Bacteria of Animal Origin, 213-238. https://doi.org/10.1128/9781555817534.ch13
  • Subharanjani, S., Gunarani, R., Prema, P., & Immanuel, G. (2015). Potential influence of probiotic bacteria on the growth gut microflora of Carassius auratus. International Journal of Fisheries and Aquatic Studies, 2(4), 319-323.
  • Taverniti, V., & Guglielmetti, S. (2011). The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes & Nutrition, 6, 261-274. https://doi.org/10.1007/s12263-011-0218-x
  • Thorakkattu, P., Khanashyam, A. C., Shah, K., Babu, K. S., Mundanat, A. S., Deliephan, A., & Nirmal, N. P. (2022). Postbiotics: Current trends in food and Pharmaceutical industry. Foods, 11, 3094. https://doi.org/10.3390/foods11193094
  • Tukaram, N. M., Biswas, A., Deo, C., Laxman, A. J., Monika, M., & Tiwari, A. K. (2022). Effects of paraprobiotic as replacements for antibiotic on performance, immunity, gut health and carcass characteristics in broiler chickens. Scientific Reports, 12, 22619. https://doi.org/10.1038/s41598-022-27181-z
  • Ubeda, C., & Pamer E. G. (2012) Antibiotics, microbiota, and immune defense. Trends in Immunology, 33(9), 459–466. https://doi.org/10.1016/j.it.2012.05.003
  • Wang, Y. B., Li, J. R., & Lin, J. (2008). Probiotics in aquaculture: challenges and outlook. Aquaculture, 281, 1-4. https://doi.org/10.1016/j.aquaculture.2008.06.002
  • Xie, X., Wang, J., Guan, Y., Xing, S., Liang, X., Xue, M., Wang, J., Chang, Y., & Leclercq, E. (2022). Cottonseed protein concentrate as fishmeal alternative for largemouth bass (Micropterus salmoides) supplemented a yeast-based paraprobiotic: Effects on growth performance, gut health and microbiome. Aquaculture, 551, 737898. https://doi.org/10.1016/j.aquaculture.2022.737898
  • Xie, X., Liang, X., Wang, H., Zhu, Q., Wang, J., Chang, Y., & Wang, J. (2023). Effects of paraprobiotics on bile acid metabolism and liver health in largemouth bass (Micropterus salmoides) fed a cottonseed protein concentrate-based diet. Animal Nutrition, 13, 302-312. https://doi.org/10.1016/j.aninu.2023.02.011
  • Yu, Z., Hao, Q., Liu, S. B., Zhang, Q. S., Chen, X. Y., Li, S. H., Ran, C., Yang, Y.L., Teame, T., Zhang, Z., & Zhou, Z. G. (2023). The positive effects of postbiotic (SWF concentration®) supplemented diet on skin mucus, liver, gut health, the structure and function of gut microbiota of common carp (Cyprinus carpio) fed with high-fat diet. Fish & Shellfish Immunology, 135, 108681. https://doi.org/10.1016/j.fsi.2023.108681
  • Yukgehnaish, K., Praveen Kumar, P., Sivachandran, P., Marimuthu, K., Arshad, A., Paray A. B., & Arockiaraj J. (2020). Gut microbiota metagenomics in aquaculture: factors influencing gut microbiome and its physiological role in fish. Reviews in Aquaculture, 12(3), 1903-1927. http://doi.org/10.1111/raq.12416

The role of postbiotics and paraprobiotics in aquaculture

Year 2023, Volume: 5 Issue: 1, 26 - 36, 25.10.2023
https://doi.org/10.51756/marlife.1287544

Abstract

In aquaculture, the use of environmentally friendly feed additives (probiotics, prebiotics, synbiotics) as an alternative to antibiotics has been rapidly increasing in recent years. In probiotic products, that are considered as living microorganisms which provide health benefits to the host when applied in sufficient quantities. Even dead cells can be encountered during the production processes and after the production. According to the fact that they can show beneficial effects on the host before and after processes has initailly led to the use of definitions 'postbiotic and parabiotic', in which non-living microbial cells or cell components formed by the breakdown of cells can also be effective. In this review, alternative definitions of postbiotic and parabiotic concepts are discussed, the methods of obtaining postbiotics and parabiotics are evaluated and their use in aquaculture are highlighted.

References

  • Aggarwal, S., Sabharwal, V., Kaushik, P., Joshi, A., Aayushi, A., & Suri, M. (2022). Postbiotics: From emerging concept to application. Frontiers in Sustainable Food Systems, 6, 887642. https://doi.org/10.3389/fsufs.2022.887642
  • Aghebati-Maleki, L., Hasannezhad, P., Abbasi, A., & Khani, N. (2021). Antibacterial, antiviral, antioxidant, and anticancer activities of postbiotics: a review of mechanisms and therapeutic perspectives. Biointerface Research in Applied Chemistry, 12(2), 2629-2645. https://doi.org/10.33263/BRIAC122.26292645
  • Aldy Mulyadin, W., Yuhana, M., & Wahjuningrum, D. (2021). Growth performance, immune response, and resistance of Nile tilapia fed paraprobiotic Bacillus sp. NP5 against Streptococcus agalactiae infection Jurnal Akuakultur Indonesia, 20(1), 34-46. https://doi.org/10.19027/jai.20.1.34-46
  • Aly, S. M., Ahmed, Y. A. G., Ghareeb, A. A. A., & Mohamed, M. F. (2008). Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish & Shellfish İmmunology, 25, 128-136. https://doi.org/10.1016/j.fsi.2008.03.013
  • Amenyogbe, E., Chen, G., Wang, Z., Huang, J.-S., Huang, B., and Li, H.-J. (2020). The exploitation of probiotics, prebiotics and synbiotics in aquaculture: present study, limitations and future directions: a review. Aquaculture International, 28, 1017–1041. https://doi.org/10.1007/s10499-020-00509-0
  • Ang, C. Y., Sano, M., Dan, S., Leelakriangsak, M., & Lal, T. M. (2020). Postbiotics applications as infectious disease control agent in aquaculture. Biocontrol Science, 25, 1-7. https://doi.org/10.4265/bio.25.1
  • Awad, E., von Wright, A., Austin, B. (2022). Quality, Safety and Regulatory Issues of Probiotics. In: Austin, B., Sharifuzzaman, S. (eds) Probiotics in Aquaculture. Springer, Cham, (pp. 285-298). https://doi.org/10.1007/978-3-030-98621-6_14
  • Aydın, F., & Çek-Yalnız, Ş. (2019) Effect of probiotics on reproductive performance of fish. Natural and Engineering Sciences, 4(2), 153-162. https://doi.org/10.28978/nesciences.567113
  • Banerjee, G., & Ray, A. K. (2017). The advancement of probiotics research and its application in fish farming industries. Research in Veterinary Science, 115, 66-77. https://doi.org/10.1016/j.rvsc.2017.01.016
  • Barros, C. P., Guimara ̃ es, J. T., Esmerino, E. A., Duarte, M. C. KH., Silva, M. C., Ramon Silva, R., Ferreira B. M., Sant’Ana, A. S., Freitas, M. Q., & Cruz, A. G. (2020). Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Current Opinion in Food Science, 32, 1-8. https://doi.org/10.1016/j.cofs.2019.12.003
  • Barros, C. P., Pires, R. P., Guimarães, J. T., Abud, Y. K., Almada, C. N., Pimentel, T. C., ... & Cruz, A. G. (2021). Ohmic heating as a method of obtaining paraprobiotics: Impacts on cell structure and viability by flow cytometry. Food Research International, 140, 110061. https://doi.org/10.1016/j.foodres.2020.110061
  • Batista, V. L., De Jesus, L. C. L., Tavares, L. M., Barroso, F. L. A., Fernandes, L. J. D. S., Freitas, A. D. S., & Azevedo, V. (2022). Paraprobiotics and Postbiotics of Lactobacillus delbrueckii CIDCA 133 Mitigate 5-FU-Induced Intestinal Inflammation. Microorganisms, 10, 1418. https://doi.org/10.3390/microorganisms10071418
  • Bhogoju, S., & Nahashon, S. (2022). Recent advances in probiotic application in animal health and nutrition: a review. Agriculture, 12(2), 304. https://doi.org/10.3390/agriculture12020304
  • Bouwmeester, M. M., Goedknegt, M. A., Poulin, R., & Thieltges, D. W. (2021). Collateral diseases: aquaculture impacts on wildlife infections. Journal of Applied Ecology, 58, 453-464. https://doi.org/10.1111/1365-2664.13775
  • Burridge, L., Weis, J. S., Cabello, F., Pizarro, J., & Bostick, K. (2010). Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture, 306, 7-23. http://dx.doi.org/10.1016/j.aquaculture.2010.05.020
  • Butera, A., Gallo, S., Pascadopoli, M., Maiorani, C., Milone, A., Alovisi, M., & Scribante, A. (2022). Paraprobiotics in non-surgical periodontal therapy: Clinical and microbiological aspects in a 6-month follow-up domiciliary protocol for oral hygiene. Microorganisms, 10, 337. https://doi.org/10.3390/microorganisms10020337
  • Butt, U. D., Lin, N., Akhter, N., Siddiqui, T., Li, S., & Wu, B. (2021). Overview of the latest developments in the role of probiotics, prebiotics and synbiotics in shrimp aquaculture. Fish & Shellfish Immunology, 114, 263-281. https://doi.org/10.1016/j.fsi.2021.05.003
  • Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental Microbiology, 8, 1137-1144. https://doi.org/10.1111/j.1462-2920.2006.01054.x
  • Carnevali, O., de Vivo, L., Sulpizio, R., Gioacchini, G., Olivotto, I., Silvi, S., & Cresci, A. (2006). Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax, L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture, 258, 430-438. https://doi.org/10.1016/j.aquaculture.2006.04.025
  • Cerezo, I. M., Domínguez-Maqueda, M., Carmen Balebona, M., Martínez-Manzanares, E., & Arijo, S. (2022). Application Methods of Probiotics and Options. In Probiotics in Aquaculture (pp. 25-52). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-98621-6_3
  • Cuevas-González, P. F., Liceaga, A. M., & Aguilar-Toalá, J. E. (2020). Postbiotics and paraprobiotics: From concepts to applications. Food Research İnternational, 136, 109502. https://doi.org/10.1016/j.foodres.2020.109502
  • da Silva Vale, A., de Melo Pereira, G. V., de Oliveira, A. C., de Carvalho Neto, D. P., Herrmann, L. W., Karp, S. G., & Soccol, C. R. (2023). Production, Formulation, and Application of Postbiotics in the Treatment of Skin Conditions. Fermentation, 9, 264. https://doi.org/10.3390/fermentation9030264
  • Dahiya, D., & Nigam, P. S. (2023). Antibiotic-therapy-induced gut dysbiosis affecting gut microbiota-brain Axis and cognition: restoration by intake of probiotics and synbiotics. International Journal of Molecular Sciences, 24, 3074. https://doi.org/10.3390/ijms24043074
  • Dang, D. X., Choi, S. Y., Choi, Y. J., Lee, J. H., Castex, M., Chevaux, E., Saornil, D., de Laguna, F.B., Jimenez, G., & Kim, I. H. (2023). Probiotic, Paraprobiotic, and Hydrolyzed Yeast Mixture Supplementation Has Comparable Effects to Zinc Oxide in Improving Growth Performance and Ameliorating Post-weaning Diarrhea in Weaned Piglets. Probiotics and Antimicrobial Proteins, 1-10. https://doi.org/10.1007/s12602-022-10008-8
  • Danladi, Y., Loh, T. C., Foo, H. L., Akit, H., Md Tamrin, N. A., & Naeem Azizi, M. (2022). Effects of postbiotics and paraprobiotics as replacements for antibiotics on growth performance, carcass characteristics, small intestine histomorphology, immune status and hepatic growth gene expression in broiler chickens. Animals, 12, 917. https://doi.org/10.3390%2Fani12070917
  • Das, A., Nakhro, K., Chowdhury S., & Kamilya, D. (2013) Effects of potential probiotic Bacillus amyloliquifaciens FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla). Fish & Shellfish Immunology, 35, 1547–1553. https://doi.org/10.1016/j.fsi.2013.08.022
  • Dash, G., Raman, R. P., Prasad, K. P., Makesh, M., Pradeep, M. A., & Sen, S. (2015). Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Fish & Shellfish Immunology, 43, 167-174. https://doi.org/10.1016/j.fsi.2014.12.007
  • Dawood, M. A., Koshio, S., Ishikawa, M., & Yokoyama, S. (2015). Effects of heat killed Lactobacillus plantarum (LP20) supplemental diets on growth performance, stress resistance and immune response of red sea bream, Pagrus major. Aquaculture, 442, 29-36. https://doi.org/10.1016/j.aquaculture.2015.02.005
  • Dawood, M. A., Koshio, S., & Esteban, M. Á. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Reviews in Aquaculture, 10, 950-974. https://doi.org/10.1111/raq.12209
  • de Almada, C. N., Almada, C. N., Martinez, R. C., & Sant'Ana, A. S. (2016). Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends in Food Science and Technology, 58, 96-114. https://doi.org/10.1016/j.tifs.2016.09.011
  • de Vrese, M., & Schrezenmeir, A. J. (2008). Probiotics, Prebiotics, and Synbiotics. In: Stahl, U., Donalies, U.E., Nevoigt, E. (eds) Food Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2008_097
  • del Valle, J. C., María Cecilia Bonadero, M. C., & Fernández-Gimenez, A. V. (2023). "Saccharomyces cerevisiae as probiotic, prebiotic, synbiotic, postbiotics and parabiotics in aquaculture: An overview." Aquaculture, 569, 739342. https://doi.org/10.1016/j.aquaculture.2023.739342
  • Deng, D., Mei, C., Mai, K., Tan, B. P., Ai, Q., & Ma, H. (2013). Effects of a yeast‐based additive on growth and immune responses of white shrimp, Litopenaeus vannamei (B oone, 1931), and aquaculture environment. Aquaculture Research, 44(9), 1348-1357. https://doi.org/10.1111/j.1365-2109.2012.03139.x
  • Deshpande, G., Athalye-Jape, G., & Patole, S. (2018). Para-probiotics for preterm neonates-The next frontier. Nutrients, 10, 871. https://doi.org/10.3390/nu10070871
  • Diwan, A. D., Harke, S. N., & Panche, A. N. (2023). Host-microbiome interaction in fish and shellfish: An overview. Fish and Shellfish Immunology Reports, 4, 100091. https://doi.org/10.1016/j.fsirep.2023.100091
  • Duarte, M., Oliveira, A. L., Oliveira, C., Pintado, M., Amaro, A., & Madureira, A. R. (2022). Current postbiotics in the cosmetic market-an update and development opportunities. Applied Microbiology and Biotechnology, 106, 5879-5891. https://doi.org/10.1007/s00253-022-12116-5
  • FAO, (2020). The state of world fisheries and aquaculture 2020. Sustainability in action. (Rome: Food and Agriculture Organization of the United Nations). https://doi.org./10.4060/ca9229en
  • FAO/WHO, (2002). Guidelines for the Evaluation of Probiotics in Food. Paris: FAO, 1–11.
  • Fijan, S. (2014). Microorganisms with claimed probiotic properties: an overview of recent literature. International Journal of Environmental Research and Public Health, 11, 4745-4767. https://doi.org/10.3390%2Fijerph110504745
  • Fiore, W., Arioli, S., & Guglielmetti, S. (2020). The neglected microbial components of commercial probiotic formulations. Microorganisms, 8, 1177. https://doi.org/10.3390/microorganisms8081177
  • Goh, J. X. H., Tan, L. T. H., Law, J. W. F., Ser, H. L., Khaw, K. Y., Letchumanan, V. & Goh, B. H. (2022). Harnessing the potentialities of probiotics, prebiotics, synbiotics, paraprobiotics, and postbiotics for shrimp farming. Reviews in Aquaculture, 14: 1478-1557. https://doi.org/10.1111/raq.12659
  • Hai, N. V. (2015). The use of probiotics in aquaculture. Journal of applied microbiology, 119(4), 917-935. https://doi.org/10.1111/jam.12886
  • Hoseinifar, S. H., Ringø, E., Shenavar Masouleh, A. & Esteban, M. Á. (2016). Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: a review. Reviews in Aquaculture, 8, 89-102. https://doi.org/10.1111/raq.12082
  • Irianto, A., & Austin, B. (2002). Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases, 25, 333-342. https://doi.org/10.1046/j.1365-2761.2002.00375.x
  • Irianto, A., & Austin, B. (2003). Use of dead probiotic cells to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases, 26(1), 59-62. https://doi.org/10.1046/j.1365-2761.2003.00414.x
  • Jonesti, W. P., Prihatna, C., Natadiputri, G. H., Suwanto, A., & Meryandini, A. (2023). Tempeh flour as an excellent source of paraprobiotics. Biodiversitas Journal of Biological Diversity, 24, 1817-1823. https://doi.org/10.13057/biodiv/d240357
  • Kamilya, D., Baruah, A., Sangma, T., Chowdhury, S., & Pal, P. (2015). Inactivated probiotic bacteria stimulate cellular immune responses of catla, Catla catla (Hamilton) in vitro. Probiotics and Antimicrobial Proteins, 7, 101-106. https://doi.org/10.1007/s12602-015-9191-9
  • Kaya, D., Hersi, M. A., Genç, E., & Arslan, H. Ö. (2022). Symbiotic effect of Bacillus clausii and Galacto-oligosaccharide on growth and survival rates in red cherry shrimp (Neocaridina davidi). Marine and Life Sciences, 4(2), 146-151. https://doi.org/10.51756/marlife.1181522
  • Khan, M. A., Khan, S., & Miyan, K. (2011). Aquaculture as a food production system: A review. Biology and Medicine, 3(2), 291-302.
  • Khattab, Y. A., Shalaby, A. M., & Abdel-Rhman, A. (2005). Use of probiotic bacteria as growth promoters, anti-bacterial and their effects on physiological parameters of Oreochromis niloticus. Proceedings of international symposium on Nile Tilapia in aquaculture (Vol. 7, pp. 156-165).
  • Lahtinen, S. J., Boyle, R. J., Margolles, A., Frias, R., & Gueimonde, M. (2009). Safety assessment of probiotics. Prebiotics and Probiotics Science and Technology, 1193. https://doi.org/10.1007/978-0-387-79058-9_31
  • Li, S., & Tran, N. T. (2022). Paraprobiotics in Aquaculture. In: Austin, B., Sharifuzzaman, S. (eds) Probiotics in Aquaculture. Springer, Cham. https://doi.org/10.1007/978-3-030-98621-6_7
  • Lim, J. J., Jung, A. H., Suh, H. J., Choi, H. S., & Kim, H. (2022). Lactiplantibacillus plantarum K8-based paraprobiotics prevents obesity and obesity-induced inflammatory responses in high fat diet-fed mice. Food Research International, 155, 111066. https://doi.org/10.1016/j.foodres.2022.111066
  • Luna-González, Antonio, Vega-Carranza, Ana, S., Escamilla-Montes, Ruth, Fierro-Coronado, Jesús, A., Diarte-Plata, Genaro & García-Gutiérrez, C. (2023). Survival, Immune Response and Gut Microbiota in Litopenaeus vannamei Fed Synbiotics, Paraprobiotics, and Postbiotics and Challenged with Vibrio parahaemolyticus. http://doi.org/10.2139/ssrn.4314518
  • Luo, K., Tian, X., Wang, B., Wei, C., Wang, L., Zhang, S., Liu, Y., Li, T., & Dong, S. (2021). Evaluation of paraprobiotic applicability of Clostridium butyricum CBG01 in improving the growth performance, immune responses and disease resistance in Pacific white shrimp, Penaeus vannamei. Aquaculture, 544, 737041. https://doi.org/10.1016/j.aquaculture.2021.737041
  • Martín, R., & Langella, P. (2019). Emerging health concepts in the probiotics field: streamlining the definitions. Frontiers in Microbiology, 10, 1047. https://doi.org/10.3389%2Ffmicb.2019.01047
  • Meng, D., Hao, Q., Zhang, Q., Yu, Z., Liu, S., Yang, Y., Ran, C., Zhang, Z., & Zhou, Z. (2023). A compound of paraprobiotic and postbiotic derived from autochthonous microorganisms improved growth performance, epidermal mucus, liver and gut health and gut microbiota of common carp (Cyprinus carpio). Aquaculture, 570, 739378. https://doi.org/10.1016/j.aquaculture.2023.739378
  • Michels, M., Córneo, E., Rocha, L. B. G., Dias, R., Voytena, A. P. L., Rossetto, M., & Jesus, G. F. A. (2023). Paraprobiotics strains accelerate wound repair by stimulating re-epithelialization of NIH-3T3 cells, decreasing inflammatory response and oxidative stress. Archives of Microbiology, 205, 134. https://doi.org/10.1007/s00203-023-03469-0
  • Michels, M., Jesus, G. F. A., Voytena, A. P. L., Rossetto, M., Ramlov, F., Córneo, E., & Dal-Pizzol, F. (2022). Immunomodulatory effect of bifidobacterium, lactobacillus, and streptococcus strains of paraprobiotics in lipopolysaccharide-stimulated inflammatory responses in RAW-264.7 macrophages. Current Microbiology, 79, 1-14. https://doi.org/10.1007/s00284-021-02708-1
  • Moradi, M., Molaei, R., & Guimarães, J. T. (2021). A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme and Microbial Technology, 143, 109722. https://doi.org/10.1016/j.enzmictec.2020.109722
  • Nataraj, B. H., Ali, S. A., Behare, P. V., & Yadav, H. (2020). Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microbial Cell Factories, 19(1), 1-22. https://doi.org/10.1186/s12934-020-01426-w
  • Navarrete, P., Mardones, P., Opazo, R., Espejo, R., & Romero, J. (2008). Oxytetracycline treatment reduces bacterial diversity of intestinal microbiota of Atlantic salmon. Journal of Aquatic Animal Health, 20, 177-183. https://doi.org/10.1577/h07-043.1
  • Nawaz, A., Irshad, S., Hoseinifar, S. H., & Xiong, H. (2018). The functionality of prebiotics as immunostimulant: Evidences from trials on terrestrial and aquatic animals. Fish & Shellfish Immunology, 76, 272-278. https://doi.org/10.1016/j.fsi.2018.03.004
  • Nayak, S. K. (2010). Probiotics and immunity: a fish perspective. Fish & Shellfish Immunology, 29, 2-14. https://doi.org/10.1016/j.fsi.2010.02.017
  • Newaj‐Fyzul, A., Adesiyun, A. A., Mutani, A., Ramsubhag, A., Brunt, J., & Austin, B. (2007). Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). Journal of Applied Microbiology, 103(5), 1699-1706. https://doi.org/10.1111/j.1365-2672.2007.03402.x
  • Okeke, E. S., Chukwudozie, K. I., Nyaruaba, R., Ita, R. E., Oladipo, A., Ejeromedoghene, O., & Okoye, C. O. (2022). Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. Environmental Science and Pollution Research, 29, 69241-69274. https://doi.org/10.1007/s11356-022-22319-y
  • Oliveira, F. C., Soares, M. P., Oliveira, B. P. N., Pilarski, F., & de Campos, C. M. (2022). Dietary administration of Bacillus subtilis, inulin and its synbiotic combination improves growth and mitigates stress in experimentally infected Pseudoplatystoma reticulatum. Aquaculture Research, 53, 4256-4265. http://dx.doi.org/10.1111/are.15923
  • Pelusio, N. F., Parma, L., Volpe, E., Ciulli, S., Errani, F., Natale, S., De Cesare, A., Indio, V., Carcano, P., Mordenti, O., Gatta, P.P., & Bonaldo, A. (2023). Yeast-extracted nucleotides and nucleic acids as promising feed additives for European sea bass (Dicentrarchus labrax) juveniles. Frontiers in Marine Science, 10, 1145660. https://doi.org/10.3389/fmars.2023.1145660
  • Pérez-Sánchez, T., Mora-Sánchez, B., Vargas, A., & Balcázar, J. L. (2020). Changes in intestinal microbiota and disease resistance following dietary postbiotic supplementation in rainbow trout (Oncorhynchus mykiss). Microbial pathogenesis, 142, 104060. https://doi.org/10.1016/j.micpath.2020.104060
  • Puri, P., Sharma, J. G., & Singh, R. (2023). Biotherapeutic microbial supplementation for ameliorating fish health: developing trends in probiotics, prebiotics, and synbiotics use in finfish aquaculture. Animal Health Research Reviews, 23, 113-135. https://doi.org/10.1017/S1466252321000165
  • Rahman, Z., & Dandekar, M. P. (2023). Implication of paraprobiotics in age-associated gut dysbiosis and neurodegenerative diseases. NeuroMolecular Medicine, 25, 14-26. https://doi.org/10.1007/s12017-022-08722-1
  • Ravi, A. V., Musthafa, K. S., Jegathammbal, G., Kathiresan, K., & Pandian, S. K. (2007). Screening and evaluation of probiotics as a biocontrol agent against pathogenic Vibrios in marine aquaculture. Letters in Applied Microbiology, 45(2), 219-223. https://doi.org/10.1111/j.1472-765X.2007.02180.x
  • Rodríguez, J., Espinosa, Y., Echeverría, F., Cárdenas, G., Román, R., & Stern, S. (2007). Exposure to probiotics and β-1, 3/1, 6-glucans in larviculture modifies the immune response of Penaeus vannamei juveniles and both the survival to White Spot Syndrome Virus challenge and pond culture. Aquaculture, 273, 405-415. https://doi.org/10.1016/j.aquaculture.2007.10.042
  • Romero, J., Ringø, E., & Merrifield, D. L. (2014). The gut microbiota of fish. Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics, 75-100. https://doi.org/10.1002/9781118897263.ch4
  • Roy, N. C., Munni, M. J., Chowdhury, M. A., & Akther, K. R. (2022). Probiotic Supplements in Aquaculture: Latest Developments and Future Trends. In Biotechnological Advances in Aquaculture Health Management (pp. 345-367). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-5195-3_16
  • Saha, D., Khataniar, A., Singh, A. K., & Jha, A. N. (2023). Review of methods for encapsulation of nutraceutical compounds. In Nutraceuticals (pp. 127-156). Academic Press. https://doi.org/10.1016/B978-0-443-19193-0.00010-1
  • Salminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M., & Vinderola, G. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18, 649-667. https://doi.org/10.1038/s41575-021-00440-6
  • Sharma, N., Kang, D. K., Paik, H. D., & Park, Y. S. (2023). Beyond probiotics: a narrative review on an era of revolution. Food Science and Biotechnology, 32, 413-421. https://doi.org/10.1007/s10068-022-01212-x
  • Siddik, M. A., Howieson, J., Islam, S. M., & Fotedar, R. (2022). Synbiotic feed supplementation improves antioxidant response and innate immunity of juvenile barramundi, Lates calcarifer subjected to bacterial infection. Aquaculture, 552, 737965. https://doi.org/10.1016/j.aquaculture.2022.737965
  • Singh, S. T., Kamilya, D., Kheti, B., Bordoloi, B., & Parhi, J. (2017). Paraprobiotic preparation from Bacillus amyloliquefaciens FPTB16 modulates immune response and immune relevant gene expression in Catla catla (Hamilton, 1822). Fish & Shellfish Immunology, 66, 35-42. https://doi.org/10.1016/j.fsi.2017.05.005
  • Shripada, R., Gayatri, A.J., & Sanjay, P. (2020). Paraprobiotics. In Precision Medicine for Investigators, Practitioners and Providers; Faintuch, J., Faintuch, S., Eds.; Academic Press: Cambridge, MA, USA, pp. 39–49. https://doi.org/10.1016/B978-0-12-819178-1.00005-8
  • Song, S. K., Beck, B. R., Kim, D., Park, J., Kim, J., Kim, H. D., & Ringø, E. (2014). Prebiotics as immunostimulants in aquaculture: a review. Fish & Shellfish Immunology, 40, 40-48. https://doi.org/10.1016/j.fsi.2014.06.016
  • Song, S., Jeong, A., Lim, J., Kim, B. K., Park, D. J., & Oh, S. (2023). Lactiplantibacillus plantarum L67 probiotics vs paraprobiotics for reducing pro‐inflammatory responses in colitis mice. International Journal of Dairy Technology, 76, 168-177. https://doi.org/10.1111/1471-0307.12918
  • Sørum, H. (2005). Antimicrobial drug resistance in fish pathogens. Antimicrobial Resistance in Bacteria of Animal Origin, 213-238. https://doi.org/10.1128/9781555817534.ch13
  • Subharanjani, S., Gunarani, R., Prema, P., & Immanuel, G. (2015). Potential influence of probiotic bacteria on the growth gut microflora of Carassius auratus. International Journal of Fisheries and Aquatic Studies, 2(4), 319-323.
  • Taverniti, V., & Guglielmetti, S. (2011). The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes & Nutrition, 6, 261-274. https://doi.org/10.1007/s12263-011-0218-x
  • Thorakkattu, P., Khanashyam, A. C., Shah, K., Babu, K. S., Mundanat, A. S., Deliephan, A., & Nirmal, N. P. (2022). Postbiotics: Current trends in food and Pharmaceutical industry. Foods, 11, 3094. https://doi.org/10.3390/foods11193094
  • Tukaram, N. M., Biswas, A., Deo, C., Laxman, A. J., Monika, M., & Tiwari, A. K. (2022). Effects of paraprobiotic as replacements for antibiotic on performance, immunity, gut health and carcass characteristics in broiler chickens. Scientific Reports, 12, 22619. https://doi.org/10.1038/s41598-022-27181-z
  • Ubeda, C., & Pamer E. G. (2012) Antibiotics, microbiota, and immune defense. Trends in Immunology, 33(9), 459–466. https://doi.org/10.1016/j.it.2012.05.003
  • Wang, Y. B., Li, J. R., & Lin, J. (2008). Probiotics in aquaculture: challenges and outlook. Aquaculture, 281, 1-4. https://doi.org/10.1016/j.aquaculture.2008.06.002
  • Xie, X., Wang, J., Guan, Y., Xing, S., Liang, X., Xue, M., Wang, J., Chang, Y., & Leclercq, E. (2022). Cottonseed protein concentrate as fishmeal alternative for largemouth bass (Micropterus salmoides) supplemented a yeast-based paraprobiotic: Effects on growth performance, gut health and microbiome. Aquaculture, 551, 737898. https://doi.org/10.1016/j.aquaculture.2022.737898
  • Xie, X., Liang, X., Wang, H., Zhu, Q., Wang, J., Chang, Y., & Wang, J. (2023). Effects of paraprobiotics on bile acid metabolism and liver health in largemouth bass (Micropterus salmoides) fed a cottonseed protein concentrate-based diet. Animal Nutrition, 13, 302-312. https://doi.org/10.1016/j.aninu.2023.02.011
  • Yu, Z., Hao, Q., Liu, S. B., Zhang, Q. S., Chen, X. Y., Li, S. H., Ran, C., Yang, Y.L., Teame, T., Zhang, Z., & Zhou, Z. G. (2023). The positive effects of postbiotic (SWF concentration®) supplemented diet on skin mucus, liver, gut health, the structure and function of gut microbiota of common carp (Cyprinus carpio) fed with high-fat diet. Fish & Shellfish Immunology, 135, 108681. https://doi.org/10.1016/j.fsi.2023.108681
  • Yukgehnaish, K., Praveen Kumar, P., Sivachandran, P., Marimuthu, K., Arshad, A., Paray A. B., & Arockiaraj J. (2020). Gut microbiota metagenomics in aquaculture: factors influencing gut microbiome and its physiological role in fish. Reviews in Aquaculture, 12(3), 1903-1927. http://doi.org/10.1111/raq.12416
There are 94 citations in total.

Details

Primary Language Turkish
Subjects Maritime Engineering (Other)
Journal Section Review Article
Authors

Fatmagün Aydın 0000-0001-7852-307X

Early Pub Date October 23, 2023
Publication Date October 25, 2023
Submission Date April 25, 2023
Acceptance Date May 26, 2023
Published in Issue Year 2023 Volume: 5 Issue: 1

Cite

APA Aydın, F. (2023). Su ürünleri yetiştiriciliğinde postbiyotik ve paraprobiyotiklerin yeri. Marine and Life Sciences, 5(1), 26-36. https://doi.org/10.51756/marlife.1287544

Flag Counter