BibTex RIS Cite

On The Para-Octonions; a Non-Associative Normed Algebra

Year 2016, , 95 - 99, 31.12.2016
https://doi.org/10.7240/mufbed.36025

Abstract

In this paper, para-octonions and their algebraic properties are provided by using the Cayley-Dickson multiplication rule between the octonionic

basis elements. The trigonometric form of a para-octonion is similar to the trigonometric form of dual number and quasi-quaternion.

We study the De-Moivre’s theorem for para-octonions, extending results obtained for real octonions and defining generalize Euler’s

formula for para-octonions.

References

  • Flaut, C., & Shpakivskyi V., (2015). An efficient method for solving equations in generalized quaternion and octonion algebras, Advance in Applied Clifford algebra, 25 (2), 337– 350.
  • Jafari M., On the Properties of Quasi-Quaternions Algebra, (2014). Communications, faculty of science, university of Ankara, Series A1: Mathematics and statistics, 63(1), 1-10.
  • Jafari M., (2015). A viewpoint on semi-octonion algebra, Journal of Selcuk university natural and applied science, 4(4), 46-53.
  • Jafari M., (2015). Split Octonion Analysis, Representation Theory and Geometry, Submitted for publication.
  • Jafari M., Azanchiler H., (2015). On the structure of the octonion matrices, Submitted for publication.
  • Jafari M., (2015). An Introduction to Quasi-Octonions and Their Representation,
  • Mortazaasl H., Jafari M., (2013). A study on Semi-quaternions Algebra in Semi-Euclidean 4-Space, Mathematical Sciences and Applications E-Notes, 1(2) 20-27.
  • Jafari M., (2015). The Fundamental Algebraic Properties of Split Quasi-Octonions, DOI: 10. 13140/RG .2.1.3348.2728
  • Rosenfeld B. A., Geometry of Lie Groups, Kluwer Academic Publishers, Dordrecht, 1997.

Para-Ktonyonlar Üzerine; Bir İlişkisel Olmayan Normlu Cebir

Year 2016, , 95 - 99, 31.12.2016
https://doi.org/10.7240/mufbed.36025

Abstract

Bu çalışmada, octonyonik baz elemanları arasında Cayley-Dickson çarpım kuralı kullanılarak para-octonyonlar ve cebirsel özellikleri verilmiştir.

Bir para-octonyonun trigonometrik formu bir dual-sayının ve bir quasi-kuaterniyonun trigonometrik formuna benzerdir. Para-octonyonlar

içn De-Moivre’nin teoremi ele alınarak reel-octonyonlar için elde edilen sonuçlar genelleştirilmiştir. Ayrıca, para-octonyonlar

için genel Euler formülleri tanımlanmıştır.

References

  • Flaut, C., & Shpakivskyi V., (2015). An efficient method for solving equations in generalized quaternion and octonion algebras, Advance in Applied Clifford algebra, 25 (2), 337– 350.
  • Jafari M., On the Properties of Quasi-Quaternions Algebra, (2014). Communications, faculty of science, university of Ankara, Series A1: Mathematics and statistics, 63(1), 1-10.
  • Jafari M., (2015). A viewpoint on semi-octonion algebra, Journal of Selcuk university natural and applied science, 4(4), 46-53.
  • Jafari M., (2015). Split Octonion Analysis, Representation Theory and Geometry, Submitted for publication.
  • Jafari M., Azanchiler H., (2015). On the structure of the octonion matrices, Submitted for publication.
  • Jafari M., (2015). An Introduction to Quasi-Octonions and Their Representation,
  • Mortazaasl H., Jafari M., (2013). A study on Semi-quaternions Algebra in Semi-Euclidean 4-Space, Mathematical Sciences and Applications E-Notes, 1(2) 20-27.
  • Jafari M., (2015). The Fundamental Algebraic Properties of Split Quasi-Octonions, DOI: 10. 13140/RG .2.1.3348.2728
  • Rosenfeld B. A., Geometry of Lie Groups, Kluwer Academic Publishers, Dordrecht, 1997.
There are 9 citations in total.

Details

Subjects Engineering
Journal Section Research Articles
Authors

Mehdi Jafarı

Publication Date December 31, 2016
Acceptance Date October 6, 2016
Published in Issue Year 2016

Cite

APA Jafarı, M. (2016). On The Para-Octonions; a Non-Associative Normed Algebra. Marmara Fen Bilimleri Dergisi, 28(3), 95-99. https://doi.org/10.7240/mufbed.36025
AMA Jafarı M. On The Para-Octonions; a Non-Associative Normed Algebra. MFBD. December 2016;28(3):95-99. doi:10.7240/mufbed.36025
Chicago Jafarı, Mehdi. “On The Para-Octonions; A Non-Associative Normed Algebra”. Marmara Fen Bilimleri Dergisi 28, no. 3 (December 2016): 95-99. https://doi.org/10.7240/mufbed.36025.
EndNote Jafarı M (December 1, 2016) On The Para-Octonions; a Non-Associative Normed Algebra. Marmara Fen Bilimleri Dergisi 28 3 95–99.
IEEE M. Jafarı, “On The Para-Octonions; a Non-Associative Normed Algebra”, MFBD, vol. 28, no. 3, pp. 95–99, 2016, doi: 10.7240/mufbed.36025.
ISNAD Jafarı, Mehdi. “On The Para-Octonions; A Non-Associative Normed Algebra”. Marmara Fen Bilimleri Dergisi 28/3 (December 2016), 95-99. https://doi.org/10.7240/mufbed.36025.
JAMA Jafarı M. On The Para-Octonions; a Non-Associative Normed Algebra. MFBD. 2016;28:95–99.
MLA Jafarı, Mehdi. “On The Para-Octonions; A Non-Associative Normed Algebra”. Marmara Fen Bilimleri Dergisi, vol. 28, no. 3, 2016, pp. 95-99, doi:10.7240/mufbed.36025.
Vancouver Jafarı M. On The Para-Octonions; a Non-Associative Normed Algebra. MFBD. 2016;28(3):95-9.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr