Research Article
BibTex RIS Cite

Sucul Organizmalarda Çevresel Şartlara Karşı Geliştirilen Oksidatif Stres Mekanizmaları ve Adaptif Yanıtlar

Year 2014, Volume: 26 Issue: 4, 137 - 151, 16.03.2015
https://doi.org/10.7240/mufbed.42520

Abstract

Sucul ekosistemlerdeki kirlilik, ciddi ve artan bir problemdir. Endüstriyel, tarımsal ve ticari kimyasalların yüksek oranda sucul çevreye deşarj edilmesi sucul canlılarda çeşitli zararlı etkilere neden olur. Biyolojik sistemlerde oksidatif stres, reaktif oksijen türlerini (ROT) artırarak veya antioksidan savunma sistemlerine hasar vererek oluşur. Balıklardaki oksidatif stresin neden olduğu biyokimyasal ve fizyolojik hasarlar, stresin şiddetine, mekanizmasına ve antioksidan enzim aktivitesine bağlıdır. Bu derlemede, sucul organizmaların çevresel şartlara karşı geliştirdikleri oksidatif stres ve adaptif yanıtların incelendiği çalışmalar ele alınmıştır.   

 

References

  • Maderia, D., Narciso, L., Cabral, H.N., Vinagre, C., Diniz, M.S. (2013). Influence of temperature in thermal and oxidative stress responses in estuarine fish. Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 166(2): 237-243. DOI: 10.1016/j.cbpa.2013.06.008.
  • Bagnyukova, T.V., Storey, K.B., Lushchak, V.I. (2003). Induction of oxidative stress in Rana ridibunda during recovery from winter hibernation. J. Therm. Biol., 28: 21–28. DOI: 10.1016/S0306-4565(02)00031-1
  • Parihar, M.S., Dubey, A.K. (1995). Lipid peroxidation and ascorbic acid status in respiratory organs of male and female freshwater catfish Heteropneustes fossilis exposed to temperature increase. Comp. Biochem. Physiol., C 112: 309–313.
  • Heise, K., Puntarulo, S., Nikinmaa, M., Abele, D., Pörtner, H.O. (2006a). Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout Zoarces viviparus L. J. Exp. Biol., 209: 353–363. DOI:10.1242/jeb.01977
  • Heise, K., Puntarulo, S., Nikinmaa, M., Lucassen, M., Pörtner, H.O., Abele, D. (2006b). Oxidative stress and HIF-1 DNA binding during stressful cold exposure and recovery in the North Sea eelpout (Zoarces viviparus). Comp. Biochem. Physiol., A 143: 494–503. DOI:10.1016/j.cbpa.2006.01.014
  • Lushchak, V.I., Bagnyukova, T.V. (2006). Effects of different environmental oxygen levels on free radical processes in fish. Comp. Biochem. Physiol., B 144: 283– 289. DOI: 10.1016/j.cbpb.2006.02.014
  • Bagnyukova, T.V., Danyliv, S.I., Zin’ko, O.S., Lushchak, V.I. (2007a). Heat shock induces oxidative stress in rotan Perccottus glenii tissues. J. Therm. Biol., 32: 255–260. DOI: 10.1016/j.jtherbio.2007.01.014
  • Bagnyukova, T.V., Luzhna, L.I., Pogribny, I.P., Lushchak, V.I. (2007b). Oxidative stress and antioxidant defenses in goldfish liver in response to short-term exposure to arsenite. Environ. Mol. Mutagen., 48: 658–665. DOI:10.1002/em.20328
  • Verlecar, X.N., Jena, K.B., Chainy, G.B., 2007. Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature. Chem. -Biol. Interact. 167, 219– 226. DOI: 10.1016/j.cbi.2007.01.018
  • Niyogi, S., Biswas, S., Sarker, S., Datta, A.G. (2001). Seasonal variation of antioxidant and biotransformation enzymes in barnacle, Balanus balanoides, and their relation with polyaromatic hydrocarbons. Mar. Environ. Res., 52: 13–26. DOI: 10.1016/S0141- 1136(00)00257-9
  • Malek, R.L., Sajadi, H., Abraham, J., Grundy, M.A., Gerhard, G.S. (2004). The effects of temperature reduction on gene expression and oxidative stress in skeletal muscle from adult zebrafish. Comp. Biochem. Physiol., C 138: 363–373. DOI: 10.1016/j.cca.2004.08.014
  • Hermes-Lima, M., Storey, J.M., Storey, K.B. (1998). Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails. Comp. Biochem. Physiol., B 120: 437–448. DOI: 10.1016/S0305-0491(98)10053-6
  • Lushchak, V.I., Lushchak, L.P., Mota, A.A., Hermes-Lima, M. (2001). Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am. J. Physiol. Regul. Integr. Comp. Physiol., 280: 100–107.
  • Lushchak, V.I., Bagnyukova, T.V., Lushchak, O.V., Storey, J.M., Storey, K.B. (2005b). Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. Int. J. Biochem. Cell Biol., 37: 1319–1330. DOI:10.1016/j.biocel.2005.01.006
  • Lushchak, V.I., Bagnyukova, T.V. (2007). Hypoxia induces oxidative stress in tissues of a goby, the rotan Perccottus glenii. Comp. Biochem. Physiol., B 148: 390–397. DOI: 10.1016/j.cbpb.2007.07.007
  • Oehlers, L.P., Perez, A.N., Walter, R.B. 2007. Detection of hypoxia-related proteins in medaka (Oryzias latipes) brain tissue by difference gel electrophoresis and de novo sequencing of 4-sulfophenyl isothiocyanate-derivatized peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Comp. Biochem. Physiol., C 145: 120–133. DOI: 10.1016/j.cbpc.2006.06.005
  • Vidal, M.L., Bassères, A., Narbonne, J.F. (2002). Influence of temperature, pH, oxygenation, water-type and substrate on biomarker responses in the freshwater clam Corbicula fluminea (Müller). Comp. Biochem. Physiol., C 132: 93–104. DOI: 10.1016/S1532-0456(02)00051-0
  • Tu, H.T., Silvestre, F., De Meulder, B., Thome, JP., Phuong, N.T., Kestemont, P. (2012). Combined effects of deltamethrin, temperature and salinity on oxidative stress biomarkers and acetylcholinesterase activity in the black tiger shrimp (Penaeus monodon). Chemosphere, 86: 83-91.
  • Lushchak, V.I., Bagnyukova, T.V., Husak, V.V., Luzhna, L.I., Lushchak, O.V., Storey, K.B. (2005a). Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int. J. Biochem. Cell Biol., 37: 1670–1680. DOI: 10.1016/j.biocel.2005.02.024
  • Olsvik, P.A., Kristensen, T., Waagbİ, R., Rosseland, B.O., Tollefsen, K.E., Baeverfjord, G., Berntssen, M.H. (2005). mRNA expression of antioxidant enzymes (SOD, CAT and GSH-Px) and lipid peroxidative stress in liver of Atlantic salmon (Salmo salar) exposed to hyperoxic water during smoltification. Comp. Biochem. Physiol., C 141: 314–323. DOI:10.1016/j.cbpc.2005.07.009
  • Salas-Leiton, E., Cánovas-Conesa, B., Zerolo, R., López-Barea, J., Ca˜navate, J.P., Alhama, J., 2009. Proteomics of juvenile senegal sole (Solea senegalensis) affected by gas bubble disease in hyperoxygenated ponds. Mar. Biotechnol. 11, 473–487. DOI:10.1007/s10126-009-9190-5
  • Viarengo, A., Canesi, L., Garcia Martinez, P., Peters, L.D., Livingstone, D.R. (1995). Prooxidant processes and antioxidant defence systems in the tissues of the Antarctic scallop (Adamussium colbecki) compared with the Mediterranean scallop (Pecten jacobaeus). Comp. Biochem. Physiol., B 111: 119–126. DOI: 10.1016/0305- 0491(94)00228-M
  • Dykens, J.A., Shick, J.M., Benoit, C., Buettner, G.R., Winston, G.W. (1992). Oxygen radical production in the sea anemone Anthopleura elegantissima and its endosymbiotic algae. J. Exp. Biol., 168: 219–241.
  • Keleştemur G. T. (2012). Hipoksik Suların Balıklar Üzerinde Oluşturduğu Fizyolojik Etkiler. Türk Bilimsel Derlemeler Dergisi, 5 (1):87-90.
  • Güven, C.K., Öztürk, B. Deniz Kirliliği. Temel Kirleticiler ve Analiz Yöntemleri. Türk Deniz Araştırmaları Vakfı. TÜDAV Yayınları. No:21. Beykoz, İstanbul. ISBN 975- 8825-08-9.
  • Davidson, J., Good, C., Welsh, C., Summerfelt, S. (2011). The effects of ozone and water exchange rates on water quality and rainbow trout Oncorhynchus mykiss performance in replicated water recirculating systems. Aquac. Eng. 44:3, 80–96. DOI: 10.1016/j.aquaeng.2011.04.001
  • Hébert, N., Gagné, F., Cejka, P., Bouchard, B., Hausler, R., Cyr, D.G., Blaise, C., Fournier, M. (2008). Effects of ozone, ultraviolet and peracetic acid disinfection of a primary-treated municipal effluent on the immune system of rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol., C 148: 122–127. DOI: 10.1016/j.cbpc.2008.04.007
  • Liu, Y., Wang, W.N., Wang, A.L., Wang, J.M., Sun, R.Y. (2007). Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei (Boone, 1931) exposed to acute salinity changes. Aquaculture, 265: 351–358. DOI: 10.1016/j.aquaculture.2007.02.010
  • Martínez-Alvarez, R.M., Hidalgo, M.C., Domezain, A., Morales, A.E., García-Gallego, M., Sanz, A. (2002). Physiological changes of sturgeon Acipenser naccarii caused by increasing environmental salinity. J. Exp. Biol., 205: 3699–3706.
  • Loro, V. L., Jorge, M. B., Silva, K. R., Wood C. M. (2012). Oxidative stress parameters and antioxidant response to sublethal waterborne zinc in a euryhaline teleost Fundulus heteroclitus: protective effects of salinity. Aquat. Toxicol., 110-111:187-93. DOI: 10.1016/j.aquatox.2012.01.012
  • Banni, M., Hajer, A., Sforzini, S., Oliveri, C., Boussetta, H., Viarengo, A. (2014). Trancriptional expression levels and biochemical markers of oxidative stress in Mytilus galloprovincialis exposed to nickel and heat stress. Comp. Biochem. Physiol., Part C160:23-29. DOI: 10.1016/j.cbp.2013.11.005
  • Alak G., Atamanalp M., Uçar A., Arslan H., Şensurat T., Parlak V., Kocaman E. M. (2012). Kahverengi Alabalıklarda (Salmo trutta fario) kadmium toksisitesine karşı humik asit etkisinin hematolojik parametrelerle araştırılması. Ege J Fish Aqua Sci., 29(4): 181-185 . DOI: 10.12714/egejfas.2013.29.4.06
  • Koutsogiannaki, S., Franzellitti, S., Fabbri, E., Kaloyianni, M. (2014). Oxidative stress parameters induced by exposure to either cadmium or 17β-estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules. Aquat. Toxicol., 146:186- 195. DOI: 10.1016/j.aquatox.2013.11.005
  • Aisen, P., Enns, C., Wessling-Resnick, M. (2001). Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol., 33: 940–959. DOI: 10.1016/S1357- 2725(01)00063-2
  • Bury, N.R., Walker, P.A., Glover, C.N. (2003). Nutritive metal uptake in teleost fish. J. Exp. Biol., 206: 11–23. DOI:10.1242/jeb.00068
  • Baker, R.T.M., Martin, P., Davies, S.J. (1997). Ingestion of sub-lethal levels of iron sulphate by African catfish affects growth and tissue lipid peroxidation. Aquat. Toxicol., 40: 51–61. DOI: 10.1016/S0166-445X(97)00047-7
  • Bagnyukova, T.V., Chahrak, O.I., Lushchak, V.I. (2006). Coordinated response of goldfish antioxidant defenses to environmental stress. Aquat. Toxicol., 78: 325–331.
  • Viarengo, A., Burlando, B., Cavaletto, M.,Marchi, B., Ponzano, E., Blasco, J. (1999). Role of metallothionein against oxidative stress in the mussel Mytilus galloprovincialis. Am. J. Physiol., 277: 1612–1619.
  • Jorge, M. B., Loro, V. L., Bianchini, A., Wood, C. M., Gillis, P. L. (2013). Mortality, bioaccumulation and physiological responses in juvenile freshwater mussels (Lampsilis siliquoidea) chronically exposed to copper. Aquat. Toxicol., 126:137-147. DOI: 10.1016/j.aquatox.2012.10.014
  • Kamunde, C., Clayton, C., Wood, C.M. (2002). Waterborne vs. dietary copper uptake in rainbow trout and the effects of previous waterborne copper exposure. Am. J. Physiol., 283: 69–78. DOI:10.1152/ajpregu.00016.2002
  • Baker, R.T.M., Handy, R.D., Davies, S.J., Snook, J.C. (1998). Chronic dietary exposure to copper affects growth, tissue lipid peroxidation, and metal composition of the grey mullet, Chelon labrosus. Mar. Environ. Res., 45: 357–365. DOI: 10.1016/S0141- 1136(98)00098-1
  • Pedrajas, J.R., Peinado, J., López-Barea, J. (1995). Oxidative stress in fish exposed to model xenobiotics. Oxidatively modified forms of Cu,Zn-superoxide dismutase as potential biomarkers. Chem. Biol. Interact., 98: 267–282.
  • Hoyle, I., Shaw, B.J., Handy, R.D. (2007). Dietary copper exposure in the African walking catfish, Clarias gariepinus: transient osmoregulatory disturbances and oxidative stress. Aquat. Toxicol., 83: 62–72. DOI: 10.1016/j.aquatox.2007.03.014
  • Hansen, B.H., Rİmma, S., Garmo, Ø.A., Olsvik, P.A., Andersen, R.A. (2006a). Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comp. Biochem. Physiol., C 143: 263–274. DOI:10.1016/j.cbpc.2006.02.010
  • Hansen, B.H., Rİmma, S., Sİfteland, L.I., Olsvik, P.A., Andersen, R.A. (2006b). Induction and activity of oxidative stress-related proteins during waterborne Cu- exposure in brown trout (Salmo trutta). Chemosphere, 65: 1707–1714. DOI: 10.1016/j.chemosphere.2006.04.088
  • Bopp, S.K., Abicht, H.K., Knauer, K. (2008). Copper-induced oxidative stress in Aquat. rainbow 10.1016/j.aquatox.2007.10.014 gill cells. Toxicol., 86: 197–204. DOI:
  • Craig, P.M., Wood, C.M., McClelland, G.B. (2007). Oxidative stress response and gene expression with acute copper exposure in zebrafish (Danio rerio). Am. J. Physiol., 293: 1882–1892. DOI:10.1152/ajpregu.00383.2007
  • Barata, C., Varo, I., Navarro, J.C., Arun, S., Porte, C. (2005). Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp. Biochem. Physiol., C 140: 175–186. DOI: 10.1016/S0166-445X(97)00047-7
  • Abele, D., Vazoquez-Medina, J. P., Zentano-Savin, T. (2012). Oxidative stress in aquatic ecosystems. Wiley-Blackwell, UK. ISBN 978-1-4443-3548-4
  • Rooney, J.P.K. (2007). The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology, 234, 145–156. DOI: 10.1016/j.tox.2007.02.016
  • Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 39, 44–84. DOI: 10.1016/j.biocel.2006.07.001
  • Guallar, E., Sanz-Gallardo, M.I., van’t Veer, P., Bode, P., Aro, A., Gomez-Aracena, J., Kark, J.D., Riemersma, R.A., Martin-Moreno, J.M., Kok, F.J. (2002). Heavy metals and myocardial infarction study group. Mercury, fish oils, and the risk of myocardial infarction. N. Engl. J. Med., 347: 1747–1754.
  • Berntssen, M.H.G., Aatland, A., Handy, R.D. (2003). Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquat. Toxicol., 65: 55–72. DOI: 10.1016/S0166-445X(03)00104-8
  • Mieiro, C.L., Ahmad, I., Pereira, M.E., Duarte, A.C., Pacheco, M. (2010). Antioxidant system breakdown in brain of feral golden grey mullet (Liza aurata) as an effect of mercury exposure. Ecotoxicology , 19 (6): 1034–1045. DOI:10.1007/s10646-010-0485
  • Monteiro, D.A., Rantin, F.T., Kalinin, A.L. (2010). Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxã, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicology, 19 (1): 105–123. DOI:10.1007/s10646-009-0395-1
  • Valko, M., Morris, H., Cronin, M.T. (2005). Metals, toxicity and oxidative stress. Curr. Med. Chem., 12: 1161–1208.
  • Schlenk, D., Wolford, L., Chelius, M., Steevens, J., Chan, K.M. (1997). Effect of arsenite, arsenate, and the herbicide monosodium methyl arsonate (MSMA) on hepatic metallothionein expression and lipid peroxidation in channel catfish. Comp. Biochem. Physiol., C 118: 177–183. DOI: 10.1016/S0742-8413(97)00083-2
  • Stara, A., Kristan, J., Zuskova, E., Velisek, J. (2013). Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.). Pestic. Biochem. Physiol., 105: 18-23. DOI: 10.1016/j.pestbp.2012.11.002
  • Pe˜ na-Llopis, S., Ferrando, M.D., Pe˜na, J.B. (2003). Increased recovery of brain acetylcholinesterase activity in dichlorvos-intoxicated European eels Anguilla anguilla by bath treatment with N-acetylcysteine. Dis. Aquat. Organ., 55: 237–245.
  • Thomaz, J.M., Martins, N.D., Monteiro, D.A., Rantin, F.T., Kalinin, A.L. (2009). Cardiorespiratory function and oxidative stress biomarkers in Nile tilapia exposed to the organophosphate insecticide trichlorfon (NEGUVON). Ecotoxicol. Environ. Saf., 72: 1413–1424. DOI: 10.1016/j.ecoenv.2008.11.003
  • Monteiro, D.A., Rantin, F.T., Kalinin, A.L. (2009). The effects of selenium on oxidative stress biomarkers in the freshwater characid fish matrinxa, Brycon cephalus (Günther, 1869) exposed to organophosphate insecticide Folisuper 600 BR (methyl parathion). Comp. Biochem. Physiol., C 149: 40–49. DOI: 10.1016/j.cbpc.2008.06.012.
  • Piner, P., Sevgiler, Y., Uner, N. (2007). In vivo effects of fenthion on oxidative processes by the modulation of glutathione metabolism in the brain of Oreochromis niloticus. Environ. Toxicol., 22: 605–612.
  • Rosety, M., Rosety-Rodríguez, M., Ordonez, F.J., Rosety, I. (2005). Time course variations of antioxidant enzyme activities and histopathology of gilthead seabream gills exposed to malathion. Histol. Histopathol., 20: 1017–1020.
  • Ruiz-Leal, M., George, S. (2004). An in vitro procedure for evaluation of early stage oxidative stress in an established fish cell line applied to investigation of PHAH and pesticide 10.1016/j.marenvres.2004.03.054 Mar. Environ. Res., 58: 631–635. DOI:
  • Filipak Neto, F., Zanata, S.M., Silva de Assis, H.C., Nakao, L.S., Randi, M.A., Oliveira Ribeiro, C.A. (2008). Toxic effects of DDT and methyl mercury on the hepatocytes from 10.1016/j.tiv.2008.07.006 Toxicol. In Vitro, 22: 1705– 1713. DOI:
  • Doğan, N., Yazıcı, Z., Şişman, T. (2011). Lepistes balığının karaciğeri üzerine fenpiroksimat akarisitinin biyokimyasal etkileri. BAÜ Fen Bil. Enst. Dergisi, 13(1): 1-8.
  • Parvez, S., Raisuddin, S. (2006). Effects of paraquat on the freshwater fish Channa punctata (Bloch): non- enzymatic antioxidants as biomarkers of exposure. Arch. Environ. Contam. Toxicol., 50: 392–397. DOI: 10.1007/s00244-005-5083-4
  • Bretaud, S., Lee, S., Guo, S. (2004). Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol. Teratol., 26: 857–864. DOI:10.1016/j.ntt.2004.06.014
  • Stephensen, E., Sturve, J., Förlin, L. (2002). Effects of redox cycling compounds on glutathione content and activity of glutathione-related enzymes in rainbow trout liver. Comp. Biochem. Physiol., C 133: 435–442. DOI: 10.1016/S1532-0456(02)00129-1
  • Wright, J., George, S., Martinez-Lara, E., Carpene, E., Kindt, M. (2000). Levels of cellular glutathione and metallothionein affect the toxicity of oxidative stressors in an established carp cell line. Mar. Environ. Res., 50: 503–508. DOI: 10.1016/S0141- 1136(00)00125-2
  • Hook, S.E., Skillman, A.D., Small, J.A., Schultz, I.R. (2006). Gene expression patterns in rainbow trout. Oncorhynchus mykiss, exposed to a suite of model toxicants. Aquat. Toxicol., 77: 372–785. DOI: 10.1016/j.aquatox.2006.01.007
  • Hai, D.Q., Varga, S.I., Matkovics, B. (1997a). Effects of diethyl-dithiocarbamate on antioxidant system in carp tissue. Acta Biol. Hung., 48: 1–8.
  • Lushchak, V.I. (2007). Free radical oxidation of proteins and its relationship with functional state of organisms. Biochemistry (Moscow), 72: 809–827.
  • Pena-Llopis, S., Pena, J.B., Sancho, E., Fernandez-Vega, C., Ferrando, M.D. (2001). Glutathione-dependent resistance of the European eel Anguilla anguilla to the herbicide molinate. Chemosphere, 45: 671–681. DOI: 10.1016/S0045-6535(00)00500-2
  • Dorval, J., Hontela, A. (2003). Role of glutathione redox cycle and catalase in defense against oxidative stress induced by endosulfan in adrenocortical cells of rainbow trout (Oncorhynchus 10.1016/S0041-008X(03)00281-3 Toxicol. Appl. Pharmacol., 192: 191–200. DOI:
  • Bagnyukova, T.V., Storey, K.B., Lushchak, V.I. (2005a). Adaptive response of antioxidant enzymes to catalase inhibition by aminotriazole in goldfish liver and kidney. Comp. DOI:10.1016/j.cbpb.2005.08.003 Biochem. Biochem. Physiol. B. Mol. Biol., 142: 335–341.
  • Bagnyukova, T.V., Vasylkiv, O.Y., Storey, K.B., Lushchak, V.I. (2005b). Catalase inhibition by amino triazole induces oxidative stress in goldfish brain. Brain Res., 1052: 180–186. DOI:10.1016/j.brainres.2005.06.002
  • Lushchak, O.V., Kubrak, O.I., Torous, I.M., Nazarchuk, T.Y., Storey, K.B., Lushchak, V.I., 2009c. Trivalent chromium induces oxidative stress in goldfish brain. Chemosphere, 75: 56–62. DOI: 10.1016/j.chemosphere.2008.11.052
  • Glusczak, L., dos Santos Miron, D., Crestani, M., Braga da Fonseca, M., de Araujo Pedron, F., Duarte, M.F., Vieira, V.L. (2006). Effect of glyphosate herbicide on acetylcholinesterase activity and metabolic and hematological parameters in piava (Leporinus 10.1016/j.ecoenv.2005.07.017 Ecotoxicol. Environ. Saf., 65: 237–241. DOI:
  • Glusczak, L., dos Santos Miron, D., Moraes, B.S., Simхes, R.R., Schetinger, M.R., Morsch, V.M., Loro, V.L. (2007). Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comp. Biochem. Physiol., C 146: 519–524. DOI:10.1016/j.cbpc.2007.06.004
  • Şişman T., Geyikoğlu F. (2010). PCB 126’ya maruz kalmış Zebra balığı (Danio rerio) larvalarındaki sensorimotor hasarlar. TUBAV Bilim Dergisi, 3(1): 61-66.
  • Song, S.B., Xu, Y., Zhou, B.S. (2006). Effects of hexachlorobenzene on antioxidant status of liver and brain of common carp (Cyprinus carpio). Chemosphere, 65: 699– 706. DOI:10.1016/j.chemosphere.2006.01.033
  • Sanchez, W., Piccini, B., Porcher, J.M. (2008). Effect of prochloraz fungicide on biotransformation enzymes and oxidative stress parameters in three-spined stickleback (Gasterosteus aculeatus L.). J. Environ. Sci. Health, Part B 43: 65–70. DOI : 10.1080/03601230701735151
  • Winston, G.W., Di Giulio, R.T. (1991). Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol., 19: 137–161. DOI: 10.1016/0166-445X(91)90033-6
  • Livingstone, D.R. (2001). Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull., 42: 656– 666. DOI:10.1016/S0025-326X(01)00060-1
  • Sturve, J., Hasselberg, L., Fälth, H., Celander, M., Förlin, L. (2006). Effects of North Sea oil and alkylphenols on biomarker responses in juvenile Atlantic cod (Gadus morhua). Aquat. Toxicol., 78: 73–78. DOI:10.1016/j.aquatox.2006.02.019
  • Gauthier, P.T., Norwood, W.P., Prepas, E.E., Pyle, G.G. (2014). Metal-PAH mixtures in the aquatic environment: A review of co-toxic mechanisms leading to more-than- additive outcomes. Aquat. Toxicol., 154: 253-269. DOI: 10.1016/j.aquatox.2014.05.026
  • Hasselberg, L., Meier, S., Svardal, A. (2004a). Effects of alkylphenols on redox status in first spawning Atlantic cod (Gadus morhua). Aquat. Toxicol., 69: 95–105. DOI: 10.1016/j.aquatox.2004.04.004
  • Hasselberg, L., Meier, S., Svardal, A., Hegelund, T., Celander, M.C. (2004b). Effects of alkylphenols on CYP1A and CYP3A expression in first spawning Atlantic cod (Gadus morhua). Aquat. Toxicol., 67: 303–313. DOI:10.1016/j.aquatox.2003.12.007
  • Uguz, C., Iscan, M., Erguven, A., Isgor, B., Togan, I. (2003). The bioaccumulation of nonyphenol and its adverse effect on the liver of rainbow trout (Onchorynchus mykiss). Environ. Res., 92: 262–270.
  • Hughes, E.M., Gallagher, E.P. (2004). Effects of 17-[beta] estradiol and 4- nonylphenol on phase II electrophilic detoxification pathways in largemouth bass (Micropterus salmoides) 10.1016/j.cca.2004.01.006 Comp. Biochem. Physiol., C 137: 237–247. DOI:
  • Akbulut C., Kızıl Ç., Yön N. D. (2013). Effects of Low Doses of Bisphenol A on Primordial Germ Cells in Zebrafish (Danio rerio) Embryos and Larvae. Kafkas Univ Vet Fak Derg., 19(4): 647-653. DOI: 10.9775/kvfd.2013.8600

Oxidative Stress Mechanisms and Adaptive Responses in Aquatic Organisms Against to Environmental Conditions

Year 2014, Volume: 26 Issue: 4, 137 - 151, 16.03.2015
https://doi.org/10.7240/mufbed.42520

Abstract

Pollution of the aquatic ecosystems is a serious and evergrowing problem. Increasing amount of industrial, agricultural and commercial chemicals discharges into the aquatic environment have led to various harmful effects on the aquatic organisms. Oxidative stress is caused through damaged biological systems via producing Reactive Oxigen Species (ROS) or by impairing antioxidant defense systems. Biochemical and physiological damages caused by oxidative stress in fish depend on antioxidant enzyme activities, stress intensity and its mechanism. This paper reviews the studies on oxidative stress developed by aquatic organisms against environmental conditions and their adaptive responses

References

  • Maderia, D., Narciso, L., Cabral, H.N., Vinagre, C., Diniz, M.S. (2013). Influence of temperature in thermal and oxidative stress responses in estuarine fish. Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 166(2): 237-243. DOI: 10.1016/j.cbpa.2013.06.008.
  • Bagnyukova, T.V., Storey, K.B., Lushchak, V.I. (2003). Induction of oxidative stress in Rana ridibunda during recovery from winter hibernation. J. Therm. Biol., 28: 21–28. DOI: 10.1016/S0306-4565(02)00031-1
  • Parihar, M.S., Dubey, A.K. (1995). Lipid peroxidation and ascorbic acid status in respiratory organs of male and female freshwater catfish Heteropneustes fossilis exposed to temperature increase. Comp. Biochem. Physiol., C 112: 309–313.
  • Heise, K., Puntarulo, S., Nikinmaa, M., Abele, D., Pörtner, H.O. (2006a). Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout Zoarces viviparus L. J. Exp. Biol., 209: 353–363. DOI:10.1242/jeb.01977
  • Heise, K., Puntarulo, S., Nikinmaa, M., Lucassen, M., Pörtner, H.O., Abele, D. (2006b). Oxidative stress and HIF-1 DNA binding during stressful cold exposure and recovery in the North Sea eelpout (Zoarces viviparus). Comp. Biochem. Physiol., A 143: 494–503. DOI:10.1016/j.cbpa.2006.01.014
  • Lushchak, V.I., Bagnyukova, T.V. (2006). Effects of different environmental oxygen levels on free radical processes in fish. Comp. Biochem. Physiol., B 144: 283– 289. DOI: 10.1016/j.cbpb.2006.02.014
  • Bagnyukova, T.V., Danyliv, S.I., Zin’ko, O.S., Lushchak, V.I. (2007a). Heat shock induces oxidative stress in rotan Perccottus glenii tissues. J. Therm. Biol., 32: 255–260. DOI: 10.1016/j.jtherbio.2007.01.014
  • Bagnyukova, T.V., Luzhna, L.I., Pogribny, I.P., Lushchak, V.I. (2007b). Oxidative stress and antioxidant defenses in goldfish liver in response to short-term exposure to arsenite. Environ. Mol. Mutagen., 48: 658–665. DOI:10.1002/em.20328
  • Verlecar, X.N., Jena, K.B., Chainy, G.B., 2007. Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature. Chem. -Biol. Interact. 167, 219– 226. DOI: 10.1016/j.cbi.2007.01.018
  • Niyogi, S., Biswas, S., Sarker, S., Datta, A.G. (2001). Seasonal variation of antioxidant and biotransformation enzymes in barnacle, Balanus balanoides, and their relation with polyaromatic hydrocarbons. Mar. Environ. Res., 52: 13–26. DOI: 10.1016/S0141- 1136(00)00257-9
  • Malek, R.L., Sajadi, H., Abraham, J., Grundy, M.A., Gerhard, G.S. (2004). The effects of temperature reduction on gene expression and oxidative stress in skeletal muscle from adult zebrafish. Comp. Biochem. Physiol., C 138: 363–373. DOI: 10.1016/j.cca.2004.08.014
  • Hermes-Lima, M., Storey, J.M., Storey, K.B. (1998). Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails. Comp. Biochem. Physiol., B 120: 437–448. DOI: 10.1016/S0305-0491(98)10053-6
  • Lushchak, V.I., Lushchak, L.P., Mota, A.A., Hermes-Lima, M. (2001). Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am. J. Physiol. Regul. Integr. Comp. Physiol., 280: 100–107.
  • Lushchak, V.I., Bagnyukova, T.V., Lushchak, O.V., Storey, J.M., Storey, K.B. (2005b). Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. Int. J. Biochem. Cell Biol., 37: 1319–1330. DOI:10.1016/j.biocel.2005.01.006
  • Lushchak, V.I., Bagnyukova, T.V. (2007). Hypoxia induces oxidative stress in tissues of a goby, the rotan Perccottus glenii. Comp. Biochem. Physiol., B 148: 390–397. DOI: 10.1016/j.cbpb.2007.07.007
  • Oehlers, L.P., Perez, A.N., Walter, R.B. 2007. Detection of hypoxia-related proteins in medaka (Oryzias latipes) brain tissue by difference gel electrophoresis and de novo sequencing of 4-sulfophenyl isothiocyanate-derivatized peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Comp. Biochem. Physiol., C 145: 120–133. DOI: 10.1016/j.cbpc.2006.06.005
  • Vidal, M.L., Bassères, A., Narbonne, J.F. (2002). Influence of temperature, pH, oxygenation, water-type and substrate on biomarker responses in the freshwater clam Corbicula fluminea (Müller). Comp. Biochem. Physiol., C 132: 93–104. DOI: 10.1016/S1532-0456(02)00051-0
  • Tu, H.T., Silvestre, F., De Meulder, B., Thome, JP., Phuong, N.T., Kestemont, P. (2012). Combined effects of deltamethrin, temperature and salinity on oxidative stress biomarkers and acetylcholinesterase activity in the black tiger shrimp (Penaeus monodon). Chemosphere, 86: 83-91.
  • Lushchak, V.I., Bagnyukova, T.V., Husak, V.V., Luzhna, L.I., Lushchak, O.V., Storey, K.B. (2005a). Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int. J. Biochem. Cell Biol., 37: 1670–1680. DOI: 10.1016/j.biocel.2005.02.024
  • Olsvik, P.A., Kristensen, T., Waagbİ, R., Rosseland, B.O., Tollefsen, K.E., Baeverfjord, G., Berntssen, M.H. (2005). mRNA expression of antioxidant enzymes (SOD, CAT and GSH-Px) and lipid peroxidative stress in liver of Atlantic salmon (Salmo salar) exposed to hyperoxic water during smoltification. Comp. Biochem. Physiol., C 141: 314–323. DOI:10.1016/j.cbpc.2005.07.009
  • Salas-Leiton, E., Cánovas-Conesa, B., Zerolo, R., López-Barea, J., Ca˜navate, J.P., Alhama, J., 2009. Proteomics of juvenile senegal sole (Solea senegalensis) affected by gas bubble disease in hyperoxygenated ponds. Mar. Biotechnol. 11, 473–487. DOI:10.1007/s10126-009-9190-5
  • Viarengo, A., Canesi, L., Garcia Martinez, P., Peters, L.D., Livingstone, D.R. (1995). Prooxidant processes and antioxidant defence systems in the tissues of the Antarctic scallop (Adamussium colbecki) compared with the Mediterranean scallop (Pecten jacobaeus). Comp. Biochem. Physiol., B 111: 119–126. DOI: 10.1016/0305- 0491(94)00228-M
  • Dykens, J.A., Shick, J.M., Benoit, C., Buettner, G.R., Winston, G.W. (1992). Oxygen radical production in the sea anemone Anthopleura elegantissima and its endosymbiotic algae. J. Exp. Biol., 168: 219–241.
  • Keleştemur G. T. (2012). Hipoksik Suların Balıklar Üzerinde Oluşturduğu Fizyolojik Etkiler. Türk Bilimsel Derlemeler Dergisi, 5 (1):87-90.
  • Güven, C.K., Öztürk, B. Deniz Kirliliği. Temel Kirleticiler ve Analiz Yöntemleri. Türk Deniz Araştırmaları Vakfı. TÜDAV Yayınları. No:21. Beykoz, İstanbul. ISBN 975- 8825-08-9.
  • Davidson, J., Good, C., Welsh, C., Summerfelt, S. (2011). The effects of ozone and water exchange rates on water quality and rainbow trout Oncorhynchus mykiss performance in replicated water recirculating systems. Aquac. Eng. 44:3, 80–96. DOI: 10.1016/j.aquaeng.2011.04.001
  • Hébert, N., Gagné, F., Cejka, P., Bouchard, B., Hausler, R., Cyr, D.G., Blaise, C., Fournier, M. (2008). Effects of ozone, ultraviolet and peracetic acid disinfection of a primary-treated municipal effluent on the immune system of rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol., C 148: 122–127. DOI: 10.1016/j.cbpc.2008.04.007
  • Liu, Y., Wang, W.N., Wang, A.L., Wang, J.M., Sun, R.Y. (2007). Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei (Boone, 1931) exposed to acute salinity changes. Aquaculture, 265: 351–358. DOI: 10.1016/j.aquaculture.2007.02.010
  • Martínez-Alvarez, R.M., Hidalgo, M.C., Domezain, A., Morales, A.E., García-Gallego, M., Sanz, A. (2002). Physiological changes of sturgeon Acipenser naccarii caused by increasing environmental salinity. J. Exp. Biol., 205: 3699–3706.
  • Loro, V. L., Jorge, M. B., Silva, K. R., Wood C. M. (2012). Oxidative stress parameters and antioxidant response to sublethal waterborne zinc in a euryhaline teleost Fundulus heteroclitus: protective effects of salinity. Aquat. Toxicol., 110-111:187-93. DOI: 10.1016/j.aquatox.2012.01.012
  • Banni, M., Hajer, A., Sforzini, S., Oliveri, C., Boussetta, H., Viarengo, A. (2014). Trancriptional expression levels and biochemical markers of oxidative stress in Mytilus galloprovincialis exposed to nickel and heat stress. Comp. Biochem. Physiol., Part C160:23-29. DOI: 10.1016/j.cbp.2013.11.005
  • Alak G., Atamanalp M., Uçar A., Arslan H., Şensurat T., Parlak V., Kocaman E. M. (2012). Kahverengi Alabalıklarda (Salmo trutta fario) kadmium toksisitesine karşı humik asit etkisinin hematolojik parametrelerle araştırılması. Ege J Fish Aqua Sci., 29(4): 181-185 . DOI: 10.12714/egejfas.2013.29.4.06
  • Koutsogiannaki, S., Franzellitti, S., Fabbri, E., Kaloyianni, M. (2014). Oxidative stress parameters induced by exposure to either cadmium or 17β-estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules. Aquat. Toxicol., 146:186- 195. DOI: 10.1016/j.aquatox.2013.11.005
  • Aisen, P., Enns, C., Wessling-Resnick, M. (2001). Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol., 33: 940–959. DOI: 10.1016/S1357- 2725(01)00063-2
  • Bury, N.R., Walker, P.A., Glover, C.N. (2003). Nutritive metal uptake in teleost fish. J. Exp. Biol., 206: 11–23. DOI:10.1242/jeb.00068
  • Baker, R.T.M., Martin, P., Davies, S.J. (1997). Ingestion of sub-lethal levels of iron sulphate by African catfish affects growth and tissue lipid peroxidation. Aquat. Toxicol., 40: 51–61. DOI: 10.1016/S0166-445X(97)00047-7
  • Bagnyukova, T.V., Chahrak, O.I., Lushchak, V.I. (2006). Coordinated response of goldfish antioxidant defenses to environmental stress. Aquat. Toxicol., 78: 325–331.
  • Viarengo, A., Burlando, B., Cavaletto, M.,Marchi, B., Ponzano, E., Blasco, J. (1999). Role of metallothionein against oxidative stress in the mussel Mytilus galloprovincialis. Am. J. Physiol., 277: 1612–1619.
  • Jorge, M. B., Loro, V. L., Bianchini, A., Wood, C. M., Gillis, P. L. (2013). Mortality, bioaccumulation and physiological responses in juvenile freshwater mussels (Lampsilis siliquoidea) chronically exposed to copper. Aquat. Toxicol., 126:137-147. DOI: 10.1016/j.aquatox.2012.10.014
  • Kamunde, C., Clayton, C., Wood, C.M. (2002). Waterborne vs. dietary copper uptake in rainbow trout and the effects of previous waterborne copper exposure. Am. J. Physiol., 283: 69–78. DOI:10.1152/ajpregu.00016.2002
  • Baker, R.T.M., Handy, R.D., Davies, S.J., Snook, J.C. (1998). Chronic dietary exposure to copper affects growth, tissue lipid peroxidation, and metal composition of the grey mullet, Chelon labrosus. Mar. Environ. Res., 45: 357–365. DOI: 10.1016/S0141- 1136(98)00098-1
  • Pedrajas, J.R., Peinado, J., López-Barea, J. (1995). Oxidative stress in fish exposed to model xenobiotics. Oxidatively modified forms of Cu,Zn-superoxide dismutase as potential biomarkers. Chem. Biol. Interact., 98: 267–282.
  • Hoyle, I., Shaw, B.J., Handy, R.D. (2007). Dietary copper exposure in the African walking catfish, Clarias gariepinus: transient osmoregulatory disturbances and oxidative stress. Aquat. Toxicol., 83: 62–72. DOI: 10.1016/j.aquatox.2007.03.014
  • Hansen, B.H., Rİmma, S., Garmo, Ø.A., Olsvik, P.A., Andersen, R.A. (2006a). Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comp. Biochem. Physiol., C 143: 263–274. DOI:10.1016/j.cbpc.2006.02.010
  • Hansen, B.H., Rİmma, S., Sİfteland, L.I., Olsvik, P.A., Andersen, R.A. (2006b). Induction and activity of oxidative stress-related proteins during waterborne Cu- exposure in brown trout (Salmo trutta). Chemosphere, 65: 1707–1714. DOI: 10.1016/j.chemosphere.2006.04.088
  • Bopp, S.K., Abicht, H.K., Knauer, K. (2008). Copper-induced oxidative stress in Aquat. rainbow 10.1016/j.aquatox.2007.10.014 gill cells. Toxicol., 86: 197–204. DOI:
  • Craig, P.M., Wood, C.M., McClelland, G.B. (2007). Oxidative stress response and gene expression with acute copper exposure in zebrafish (Danio rerio). Am. J. Physiol., 293: 1882–1892. DOI:10.1152/ajpregu.00383.2007
  • Barata, C., Varo, I., Navarro, J.C., Arun, S., Porte, C. (2005). Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp. Biochem. Physiol., C 140: 175–186. DOI: 10.1016/S0166-445X(97)00047-7
  • Abele, D., Vazoquez-Medina, J. P., Zentano-Savin, T. (2012). Oxidative stress in aquatic ecosystems. Wiley-Blackwell, UK. ISBN 978-1-4443-3548-4
  • Rooney, J.P.K. (2007). The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology, 234, 145–156. DOI: 10.1016/j.tox.2007.02.016
  • Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 39, 44–84. DOI: 10.1016/j.biocel.2006.07.001
  • Guallar, E., Sanz-Gallardo, M.I., van’t Veer, P., Bode, P., Aro, A., Gomez-Aracena, J., Kark, J.D., Riemersma, R.A., Martin-Moreno, J.M., Kok, F.J. (2002). Heavy metals and myocardial infarction study group. Mercury, fish oils, and the risk of myocardial infarction. N. Engl. J. Med., 347: 1747–1754.
  • Berntssen, M.H.G., Aatland, A., Handy, R.D. (2003). Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquat. Toxicol., 65: 55–72. DOI: 10.1016/S0166-445X(03)00104-8
  • Mieiro, C.L., Ahmad, I., Pereira, M.E., Duarte, A.C., Pacheco, M. (2010). Antioxidant system breakdown in brain of feral golden grey mullet (Liza aurata) as an effect of mercury exposure. Ecotoxicology , 19 (6): 1034–1045. DOI:10.1007/s10646-010-0485
  • Monteiro, D.A., Rantin, F.T., Kalinin, A.L. (2010). Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxã, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicology, 19 (1): 105–123. DOI:10.1007/s10646-009-0395-1
  • Valko, M., Morris, H., Cronin, M.T. (2005). Metals, toxicity and oxidative stress. Curr. Med. Chem., 12: 1161–1208.
  • Schlenk, D., Wolford, L., Chelius, M., Steevens, J., Chan, K.M. (1997). Effect of arsenite, arsenate, and the herbicide monosodium methyl arsonate (MSMA) on hepatic metallothionein expression and lipid peroxidation in channel catfish. Comp. Biochem. Physiol., C 118: 177–183. DOI: 10.1016/S0742-8413(97)00083-2
  • Stara, A., Kristan, J., Zuskova, E., Velisek, J. (2013). Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.). Pestic. Biochem. Physiol., 105: 18-23. DOI: 10.1016/j.pestbp.2012.11.002
  • Pe˜ na-Llopis, S., Ferrando, M.D., Pe˜na, J.B. (2003). Increased recovery of brain acetylcholinesterase activity in dichlorvos-intoxicated European eels Anguilla anguilla by bath treatment with N-acetylcysteine. Dis. Aquat. Organ., 55: 237–245.
  • Thomaz, J.M., Martins, N.D., Monteiro, D.A., Rantin, F.T., Kalinin, A.L. (2009). Cardiorespiratory function and oxidative stress biomarkers in Nile tilapia exposed to the organophosphate insecticide trichlorfon (NEGUVON). Ecotoxicol. Environ. Saf., 72: 1413–1424. DOI: 10.1016/j.ecoenv.2008.11.003
  • Monteiro, D.A., Rantin, F.T., Kalinin, A.L. (2009). The effects of selenium on oxidative stress biomarkers in the freshwater characid fish matrinxa, Brycon cephalus (Günther, 1869) exposed to organophosphate insecticide Folisuper 600 BR (methyl parathion). Comp. Biochem. Physiol., C 149: 40–49. DOI: 10.1016/j.cbpc.2008.06.012.
  • Piner, P., Sevgiler, Y., Uner, N. (2007). In vivo effects of fenthion on oxidative processes by the modulation of glutathione metabolism in the brain of Oreochromis niloticus. Environ. Toxicol., 22: 605–612.
  • Rosety, M., Rosety-Rodríguez, M., Ordonez, F.J., Rosety, I. (2005). Time course variations of antioxidant enzyme activities and histopathology of gilthead seabream gills exposed to malathion. Histol. Histopathol., 20: 1017–1020.
  • Ruiz-Leal, M., George, S. (2004). An in vitro procedure for evaluation of early stage oxidative stress in an established fish cell line applied to investigation of PHAH and pesticide 10.1016/j.marenvres.2004.03.054 Mar. Environ. Res., 58: 631–635. DOI:
  • Filipak Neto, F., Zanata, S.M., Silva de Assis, H.C., Nakao, L.S., Randi, M.A., Oliveira Ribeiro, C.A. (2008). Toxic effects of DDT and methyl mercury on the hepatocytes from 10.1016/j.tiv.2008.07.006 Toxicol. In Vitro, 22: 1705– 1713. DOI:
  • Doğan, N., Yazıcı, Z., Şişman, T. (2011). Lepistes balığının karaciğeri üzerine fenpiroksimat akarisitinin biyokimyasal etkileri. BAÜ Fen Bil. Enst. Dergisi, 13(1): 1-8.
  • Parvez, S., Raisuddin, S. (2006). Effects of paraquat on the freshwater fish Channa punctata (Bloch): non- enzymatic antioxidants as biomarkers of exposure. Arch. Environ. Contam. Toxicol., 50: 392–397. DOI: 10.1007/s00244-005-5083-4
  • Bretaud, S., Lee, S., Guo, S. (2004). Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol. Teratol., 26: 857–864. DOI:10.1016/j.ntt.2004.06.014
  • Stephensen, E., Sturve, J., Förlin, L. (2002). Effects of redox cycling compounds on glutathione content and activity of glutathione-related enzymes in rainbow trout liver. Comp. Biochem. Physiol., C 133: 435–442. DOI: 10.1016/S1532-0456(02)00129-1
  • Wright, J., George, S., Martinez-Lara, E., Carpene, E., Kindt, M. (2000). Levels of cellular glutathione and metallothionein affect the toxicity of oxidative stressors in an established carp cell line. Mar. Environ. Res., 50: 503–508. DOI: 10.1016/S0141- 1136(00)00125-2
  • Hook, S.E., Skillman, A.D., Small, J.A., Schultz, I.R. (2006). Gene expression patterns in rainbow trout. Oncorhynchus mykiss, exposed to a suite of model toxicants. Aquat. Toxicol., 77: 372–785. DOI: 10.1016/j.aquatox.2006.01.007
  • Hai, D.Q., Varga, S.I., Matkovics, B. (1997a). Effects of diethyl-dithiocarbamate on antioxidant system in carp tissue. Acta Biol. Hung., 48: 1–8.
  • Lushchak, V.I. (2007). Free radical oxidation of proteins and its relationship with functional state of organisms. Biochemistry (Moscow), 72: 809–827.
  • Pena-Llopis, S., Pena, J.B., Sancho, E., Fernandez-Vega, C., Ferrando, M.D. (2001). Glutathione-dependent resistance of the European eel Anguilla anguilla to the herbicide molinate. Chemosphere, 45: 671–681. DOI: 10.1016/S0045-6535(00)00500-2
  • Dorval, J., Hontela, A. (2003). Role of glutathione redox cycle and catalase in defense against oxidative stress induced by endosulfan in adrenocortical cells of rainbow trout (Oncorhynchus 10.1016/S0041-008X(03)00281-3 Toxicol. Appl. Pharmacol., 192: 191–200. DOI:
  • Bagnyukova, T.V., Storey, K.B., Lushchak, V.I. (2005a). Adaptive response of antioxidant enzymes to catalase inhibition by aminotriazole in goldfish liver and kidney. Comp. DOI:10.1016/j.cbpb.2005.08.003 Biochem. Biochem. Physiol. B. Mol. Biol., 142: 335–341.
  • Bagnyukova, T.V., Vasylkiv, O.Y., Storey, K.B., Lushchak, V.I. (2005b). Catalase inhibition by amino triazole induces oxidative stress in goldfish brain. Brain Res., 1052: 180–186. DOI:10.1016/j.brainres.2005.06.002
  • Lushchak, O.V., Kubrak, O.I., Torous, I.M., Nazarchuk, T.Y., Storey, K.B., Lushchak, V.I., 2009c. Trivalent chromium induces oxidative stress in goldfish brain. Chemosphere, 75: 56–62. DOI: 10.1016/j.chemosphere.2008.11.052
  • Glusczak, L., dos Santos Miron, D., Crestani, M., Braga da Fonseca, M., de Araujo Pedron, F., Duarte, M.F., Vieira, V.L. (2006). Effect of glyphosate herbicide on acetylcholinesterase activity and metabolic and hematological parameters in piava (Leporinus 10.1016/j.ecoenv.2005.07.017 Ecotoxicol. Environ. Saf., 65: 237–241. DOI:
  • Glusczak, L., dos Santos Miron, D., Moraes, B.S., Simхes, R.R., Schetinger, M.R., Morsch, V.M., Loro, V.L. (2007). Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comp. Biochem. Physiol., C 146: 519–524. DOI:10.1016/j.cbpc.2007.06.004
  • Şişman T., Geyikoğlu F. (2010). PCB 126’ya maruz kalmış Zebra balığı (Danio rerio) larvalarındaki sensorimotor hasarlar. TUBAV Bilim Dergisi, 3(1): 61-66.
  • Song, S.B., Xu, Y., Zhou, B.S. (2006). Effects of hexachlorobenzene on antioxidant status of liver and brain of common carp (Cyprinus carpio). Chemosphere, 65: 699– 706. DOI:10.1016/j.chemosphere.2006.01.033
  • Sanchez, W., Piccini, B., Porcher, J.M. (2008). Effect of prochloraz fungicide on biotransformation enzymes and oxidative stress parameters in three-spined stickleback (Gasterosteus aculeatus L.). J. Environ. Sci. Health, Part B 43: 65–70. DOI : 10.1080/03601230701735151
  • Winston, G.W., Di Giulio, R.T. (1991). Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol., 19: 137–161. DOI: 10.1016/0166-445X(91)90033-6
  • Livingstone, D.R. (2001). Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull., 42: 656– 666. DOI:10.1016/S0025-326X(01)00060-1
  • Sturve, J., Hasselberg, L., Fälth, H., Celander, M., Förlin, L. (2006). Effects of North Sea oil and alkylphenols on biomarker responses in juvenile Atlantic cod (Gadus morhua). Aquat. Toxicol., 78: 73–78. DOI:10.1016/j.aquatox.2006.02.019
  • Gauthier, P.T., Norwood, W.P., Prepas, E.E., Pyle, G.G. (2014). Metal-PAH mixtures in the aquatic environment: A review of co-toxic mechanisms leading to more-than- additive outcomes. Aquat. Toxicol., 154: 253-269. DOI: 10.1016/j.aquatox.2014.05.026
  • Hasselberg, L., Meier, S., Svardal, A. (2004a). Effects of alkylphenols on redox status in first spawning Atlantic cod (Gadus morhua). Aquat. Toxicol., 69: 95–105. DOI: 10.1016/j.aquatox.2004.04.004
  • Hasselberg, L., Meier, S., Svardal, A., Hegelund, T., Celander, M.C. (2004b). Effects of alkylphenols on CYP1A and CYP3A expression in first spawning Atlantic cod (Gadus morhua). Aquat. Toxicol., 67: 303–313. DOI:10.1016/j.aquatox.2003.12.007
  • Uguz, C., Iscan, M., Erguven, A., Isgor, B., Togan, I. (2003). The bioaccumulation of nonyphenol and its adverse effect on the liver of rainbow trout (Onchorynchus mykiss). Environ. Res., 92: 262–270.
  • Hughes, E.M., Gallagher, E.P. (2004). Effects of 17-[beta] estradiol and 4- nonylphenol on phase II electrophilic detoxification pathways in largemouth bass (Micropterus salmoides) 10.1016/j.cca.2004.01.006 Comp. Biochem. Physiol., C 137: 237–247. DOI:
  • Akbulut C., Kızıl Ç., Yön N. D. (2013). Effects of Low Doses of Bisphenol A on Primordial Germ Cells in Zebrafish (Danio rerio) Embryos and Larvae. Kafkas Univ Vet Fak Derg., 19(4): 647-653. DOI: 10.9775/kvfd.2013.8600
There are 92 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Figen Kayhan

Güllü Kaymak

Cansu Akbulut

Harika Esmer This is me

Nazan Deniz Yön This is me

Publication Date March 16, 2015
Published in Issue Year 2014 Volume: 26 Issue: 4

Cite

APA Kayhan, F., Kaymak, G., Akbulut, C., Esmer, H., et al. (2015). Sucul Organizmalarda Çevresel Şartlara Karşı Geliştirilen Oksidatif Stres Mekanizmaları ve Adaptif Yanıtlar. Marmara Fen Bilimleri Dergisi, 26(4), 137-151. https://doi.org/10.7240/mufbed.42520
AMA Kayhan F, Kaymak G, Akbulut C, Esmer H, Yön ND. Sucul Organizmalarda Çevresel Şartlara Karşı Geliştirilen Oksidatif Stres Mekanizmaları ve Adaptif Yanıtlar. MFBD. March 2015;26(4):137-151. doi:10.7240/mufbed.42520
Chicago Kayhan, Figen, Güllü Kaymak, Cansu Akbulut, Harika Esmer, and Nazan Deniz Yön. “Sucul Organizmalarda Çevresel Şartlara Karşı Geliştirilen Oksidatif Stres Mekanizmaları Ve Adaptif Yanıtlar”. Marmara Fen Bilimleri Dergisi 26, no. 4 (March 2015): 137-51. https://doi.org/10.7240/mufbed.42520.
EndNote Kayhan F, Kaymak G, Akbulut C, Esmer H, Yön ND (March 1, 2015) Sucul Organizmalarda Çevresel Şartlara Karşı Geliştirilen Oksidatif Stres Mekanizmaları ve Adaptif Yanıtlar. Marmara Fen Bilimleri Dergisi 26 4 137–151.
IEEE F. Kayhan, G. Kaymak, C. Akbulut, H. Esmer, and N. D. Yön, “Sucul Organizmalarda Çevresel Şartlara Karşı Geliştirilen Oksidatif Stres Mekanizmaları ve Adaptif Yanıtlar”, MFBD, vol. 26, no. 4, pp. 137–151, 2015, doi: 10.7240/mufbed.42520.
ISNAD Kayhan, Figen et al. “Sucul Organizmalarda Çevresel Şartlara Karşı Geliştirilen Oksidatif Stres Mekanizmaları Ve Adaptif Yanıtlar”. Marmara Fen Bilimleri Dergisi 26/4 (March 2015), 137-151. https://doi.org/10.7240/mufbed.42520.
JAMA Kayhan F, Kaymak G, Akbulut C, Esmer H, Yön ND. Sucul Organizmalarda Çevresel Şartlara Karşı Geliştirilen Oksidatif Stres Mekanizmaları ve Adaptif Yanıtlar. MFBD. 2015;26:137–151.
MLA Kayhan, Figen et al. “Sucul Organizmalarda Çevresel Şartlara Karşı Geliştirilen Oksidatif Stres Mekanizmaları Ve Adaptif Yanıtlar”. Marmara Fen Bilimleri Dergisi, vol. 26, no. 4, 2015, pp. 137-51, doi:10.7240/mufbed.42520.
Vancouver Kayhan F, Kaymak G, Akbulut C, Esmer H, Yön ND. Sucul Organizmalarda Çevresel Şartlara Karşı Geliştirilen Oksidatif Stres Mekanizmaları ve Adaptif Yanıtlar. MFBD. 2015;26(4):137-51.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr