Research Article
BibTex RIS Cite

APPROXIMATE SOLUTIONS OF FRACTIONAL BOUNDARY VALUE PROBLEMS BASED ON BETA FRACTIONAL DERIVATIVE

Year 2018, Volume: 30 Issue: 4, 478 - 486, 31.12.2018
https://doi.org/10.7240/marufbd.440412

Abstract

In
this work, we consider some fractional differential equations with different
boundary conditions. Sinc-collocation method (SCM) has been employed to obtain
the approximate solution for these fractional boundary value problems (FBVPs).
Beta-derivative is taken for the fractional derivatives. Intercalarity, several
test samples with numerical simulations are handled. Convergence analysis shows
that SCM  is a consistent and effective
method.

References

  • [1] S.G. Samko, A.A. Kilbas, O.I. Marichev, "Fractional Integrals and Derivatives", Gordon and Breach, Yverdon, 1993.[2] K. Miller, B. Ross, "An introduction to the fractional calculus and fractional differential equations", NewYork: Wiley, 1993.[3] K. B. Oldham, J. Spanier, "The fractional calculus", Academic Press, NewYork and London, 1974.[4] I. Podlubny, "Fractional differential equations", Academic Press, San Diego, 1999.[5] R. Herrmann, "Fractional Calculus: An Introduction for Physicists", World Scientific, Singapore, 2014.[6] J. Sabatier, O. P. Agrawal, J. A. T. Machado, "Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering", Springer, 2007.[7] C. Li, , F. Zeng, "The finite difference methods for fractional ordinary differential equations", Numerical Functional Analysis and Optimization, Vol.34(2), pp:149-179, 2013.[8] G. Wu, E. W. M. Lee, "Fractional variational iteration method and its application", Physics Letter A, Vol.374, pp:2506-2509, 2010.[9] B. Kumar Singh , P. Kumar, "Fractional Variational Iteration Method for Solving Fractional Partial Differential Equations with Proportional Delay", International Journal of Differential Equations, Article ID. 5206380, 2017.[10] V. Daftardar-Gejji, H. Jafari, "Solving a multi-order fractional differential equation using adomian decomposition", Applied Mathematics and Computation, Vol.189, pp:541-548, 2007.[11] S.A.El-Wakil, A.Elhanbaly, M.A.Abdou, "Adomian decomposition method for solving fractional nonlinear differential equations", Applied Mathematics and Computation, Vol. 182(1) , 313-324, 2006.[12] Y. Wang, H. Song, D. Li, "Solving two-point boundary value problems using combined homotopy perturbation method and Greens function method", Appled Mathematics and Computation, Vol.212(2), pp:366-376, 2009.[13] B. Ghazanfari, F.Veisi, "Homotopy analysis method for the fractional nonlinear equations", Journal of King Saud University-Science, Vol. 23(4), pp:389-393, 2011.[14] M. U. Rehman, R. A. Khan, "A numerical method for solving boundary value problems for fractional differential equations", Applied Mathematics Modelling, Vol.36(3), pp:894-907, 2012.[15] S.C.Shiralashetti, A.B.Deshi, "An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations", Nonlinear Dynamics, Vol.83(1-2), pp:293–303, 2016.[16] D.Baleanu, A.H.Bhrawy, T.M.Taha, "A Modified Generalized Laguerre Spectral Method for Fractional Differential Equations on the Half Line", Abstract and Applied Analysis, Article ID 413529, 2013.[17] A. Mohsen and M. El-Gamel, “A Sinc-Collocation Method for the Linear Fredholm Integro-Differential Equations” , Zeitschrift fÄur angewandte Mathematik und Physik, Vol.58, pp:380-390, 2007.[18] K. Parand and A. Prikhedri, “Sinc-Collocation Method for Solving Astrophysics Equations”, New Astronomy, Vol.15, pp:533-537, 2010.[19] K. Parand, M Dehghan and A. Pirkhedri, “Sinc-Collocation Method for Solving the Blasius Equation”, Physics Letters A, Vol.373, pp:4060-4065, 2009.[20] A. Saadatmandi and M. Dehghan, “The use of Sinc-Collocation Method for Solving Multi-Point Boundary Value Problems”, Communications in Nonlinear Science and Numerical Simulation, Vol.17, pp:593-601, 2012.[21] J. Rashidinia and M. Nabati, “ Sinc-Galerkin and Sinc-Collocation Methods in the Solution of Nonlinear Two-point Boundary Value Problems”, Computational and Applied Mathematics, Vol.32, pp:315-330, 2013.[22] X. Wu, C. Li and W. Kong “A Sinc-Collocation Method with Boundary Treatment for Two-Dimensional Elliptic Boundary Value Problems”, Journal of Computational and applied Mathematics, Vol.196, pp:58-69, 2006.[23] K. Maleknejad and K. Nedaiasl, “Application of Sinc-Collocation Method for Solving a Class of Nonlinear Fredholm Integral Equations”, Vol.62, pp: 3292-3303, 2011.[24] R. Mokhtari and M. Mohammadi, “Numerical Solution of GRLW Equation using Sinc-Collocation Method”, Computer Physics Communucations, Vol.181, pp: 1266-1274, 2010.[25] J. Rashidinia and M. Zarebnia, “Numerical Solution of Linear Integral Equations by Using Sinc-Collocation Method”, Applied Mathematics and Computation, Vol.168, pp:806-822, 2005.[26] G.A. Zakeri and M. Navab, “Sinc-Collocation Approximation of Non-Smooth Solution of a Nonlinear Weakly Singular Volterra Integral Equation”, Journal of Computational Physics, Vol.229, pp:6548-6557, 2010.[27] T. Okayama, T. Matsuo and M. Sugihara, “ Sinc-Collocation Methods for Weakly Singular Fredholm Integral Equations of the Second Kind”, Journal of Computational and Applied Mathematics, Vol.234, pp:1211-1227, 2010.[28] A. Atangana, E. F. Doungmo Goufo, "Extension of matched asymptotic method to fractional boundary layers problems", Mathematical Problems in Engineering, Article ID 107535, 2014.[29] A.Atangana, S. C. Oukouomi Noutchie, "Model of break-bone fever via beta-derivatives", BioMed research international, Article ID 523159, 2014.[30] A. Atangana, E. F. D. Goufo," On the mathematical analysis of Ebola hemorrhagic fever: deathly infection disease in West African countries", BioMed research international, Article ID 261383, 2014.[31] A. Atangana, B. S. T. Alkahtani, "Modeling the spread of Rubella disease using the concept of with local derivative with fractional parameter", Complexity, Vol.21(6), pp:442-451, 2016.[32] A. Atangana, "A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women", Neural Computing and Applications, Vol.26(8), pp:1895-1903, 2015.[33] F. Stenger, "Approximations via Whittaker's cardinal function" ,Journal of Approximation Theory, Vol,17(3), pp:222-240, 1976.[34] S. Alkan, "A numerical method for solution of integro-differential equations of fractional order", Sakarya University Journal of Science, Vol.21(2), pp:82-89, 2017.[35] E. T. Whittaker, "On the functions which are represented by the expansions of the interpolation theory", Proceeding of the Royal Society of Edinburgh, Vol.35, pp:181-194, 1915.[36] J. M. Whittaker, "Interpolation Function Theory", Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press, London, 1935.[37] S. Alkan, "A new solution method for nonlinear fractional integro-differential equations", Discrete and Continuous Dynamics Systems-S, Vol.8(6), pp:1065-1077, 2015.[38] A. Atangana, R. T. Alqahtani, "Modelling the spread of river blindness disease via the caputo fractional derivative and the beta-derivative", Entropy, Vol.18(2), pp:40, 2016.[39] F. Stenger, "Integration formulae based on the trapezoidal formula", IMA Journal of Applied Mathematics, Vol.12(1), pp:103-114, 1973.

BETA KESİRLİ TÜREVLİ SINIR DEĞER PROBLEMLERİNİN YAKLAŞIK ÇÖZÜMLERİ

Year 2018, Volume: 30 Issue: 4, 478 - 486, 31.12.2018
https://doi.org/10.7240/marufbd.440412

Abstract

Bu çalışmada, bazı farklı sınır koşullu kesirli diferansiyel denklemleri ele aldık. Bu kesirli sınır değer problemlerinin için yaklaşık çözüm belirlemek için  Sinc sıralama yöntemi kullanılmıştır. Kesirli türevler için Beta türevi alınmıştır. Ek olarak, birtakım örnekler sayısal simulasyonları ile ele alınmıştır. Yakınsaklık analizi, Sinc sıralama yönteminin tuttarlı ve etkin bir yöntem olduğunu göstermiştir.

References

  • [1] S.G. Samko, A.A. Kilbas, O.I. Marichev, "Fractional Integrals and Derivatives", Gordon and Breach, Yverdon, 1993.[2] K. Miller, B. Ross, "An introduction to the fractional calculus and fractional differential equations", NewYork: Wiley, 1993.[3] K. B. Oldham, J. Spanier, "The fractional calculus", Academic Press, NewYork and London, 1974.[4] I. Podlubny, "Fractional differential equations", Academic Press, San Diego, 1999.[5] R. Herrmann, "Fractional Calculus: An Introduction for Physicists", World Scientific, Singapore, 2014.[6] J. Sabatier, O. P. Agrawal, J. A. T. Machado, "Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering", Springer, 2007.[7] C. Li, , F. Zeng, "The finite difference methods for fractional ordinary differential equations", Numerical Functional Analysis and Optimization, Vol.34(2), pp:149-179, 2013.[8] G. Wu, E. W. M. Lee, "Fractional variational iteration method and its application", Physics Letter A, Vol.374, pp:2506-2509, 2010.[9] B. Kumar Singh , P. Kumar, "Fractional Variational Iteration Method for Solving Fractional Partial Differential Equations with Proportional Delay", International Journal of Differential Equations, Article ID. 5206380, 2017.[10] V. Daftardar-Gejji, H. Jafari, "Solving a multi-order fractional differential equation using adomian decomposition", Applied Mathematics and Computation, Vol.189, pp:541-548, 2007.[11] S.A.El-Wakil, A.Elhanbaly, M.A.Abdou, "Adomian decomposition method for solving fractional nonlinear differential equations", Applied Mathematics and Computation, Vol. 182(1) , 313-324, 2006.[12] Y. Wang, H. Song, D. Li, "Solving two-point boundary value problems using combined homotopy perturbation method and Greens function method", Appled Mathematics and Computation, Vol.212(2), pp:366-376, 2009.[13] B. Ghazanfari, F.Veisi, "Homotopy analysis method for the fractional nonlinear equations", Journal of King Saud University-Science, Vol. 23(4), pp:389-393, 2011.[14] M. U. Rehman, R. A. Khan, "A numerical method for solving boundary value problems for fractional differential equations", Applied Mathematics Modelling, Vol.36(3), pp:894-907, 2012.[15] S.C.Shiralashetti, A.B.Deshi, "An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations", Nonlinear Dynamics, Vol.83(1-2), pp:293–303, 2016.[16] D.Baleanu, A.H.Bhrawy, T.M.Taha, "A Modified Generalized Laguerre Spectral Method for Fractional Differential Equations on the Half Line", Abstract and Applied Analysis, Article ID 413529, 2013.[17] A. Mohsen and M. El-Gamel, “A Sinc-Collocation Method for the Linear Fredholm Integro-Differential Equations” , Zeitschrift fÄur angewandte Mathematik und Physik, Vol.58, pp:380-390, 2007.[18] K. Parand and A. Prikhedri, “Sinc-Collocation Method for Solving Astrophysics Equations”, New Astronomy, Vol.15, pp:533-537, 2010.[19] K. Parand, M Dehghan and A. Pirkhedri, “Sinc-Collocation Method for Solving the Blasius Equation”, Physics Letters A, Vol.373, pp:4060-4065, 2009.[20] A. Saadatmandi and M. Dehghan, “The use of Sinc-Collocation Method for Solving Multi-Point Boundary Value Problems”, Communications in Nonlinear Science and Numerical Simulation, Vol.17, pp:593-601, 2012.[21] J. Rashidinia and M. Nabati, “ Sinc-Galerkin and Sinc-Collocation Methods in the Solution of Nonlinear Two-point Boundary Value Problems”, Computational and Applied Mathematics, Vol.32, pp:315-330, 2013.[22] X. Wu, C. Li and W. Kong “A Sinc-Collocation Method with Boundary Treatment for Two-Dimensional Elliptic Boundary Value Problems”, Journal of Computational and applied Mathematics, Vol.196, pp:58-69, 2006.[23] K. Maleknejad and K. Nedaiasl, “Application of Sinc-Collocation Method for Solving a Class of Nonlinear Fredholm Integral Equations”, Vol.62, pp: 3292-3303, 2011.[24] R. Mokhtari and M. Mohammadi, “Numerical Solution of GRLW Equation using Sinc-Collocation Method”, Computer Physics Communucations, Vol.181, pp: 1266-1274, 2010.[25] J. Rashidinia and M. Zarebnia, “Numerical Solution of Linear Integral Equations by Using Sinc-Collocation Method”, Applied Mathematics and Computation, Vol.168, pp:806-822, 2005.[26] G.A. Zakeri and M. Navab, “Sinc-Collocation Approximation of Non-Smooth Solution of a Nonlinear Weakly Singular Volterra Integral Equation”, Journal of Computational Physics, Vol.229, pp:6548-6557, 2010.[27] T. Okayama, T. Matsuo and M. Sugihara, “ Sinc-Collocation Methods for Weakly Singular Fredholm Integral Equations of the Second Kind”, Journal of Computational and Applied Mathematics, Vol.234, pp:1211-1227, 2010.[28] A. Atangana, E. F. Doungmo Goufo, "Extension of matched asymptotic method to fractional boundary layers problems", Mathematical Problems in Engineering, Article ID 107535, 2014.[29] A.Atangana, S. C. Oukouomi Noutchie, "Model of break-bone fever via beta-derivatives", BioMed research international, Article ID 523159, 2014.[30] A. Atangana, E. F. D. Goufo," On the mathematical analysis of Ebola hemorrhagic fever: deathly infection disease in West African countries", BioMed research international, Article ID 261383, 2014.[31] A. Atangana, B. S. T. Alkahtani, "Modeling the spread of Rubella disease using the concept of with local derivative with fractional parameter", Complexity, Vol.21(6), pp:442-451, 2016.[32] A. Atangana, "A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women", Neural Computing and Applications, Vol.26(8), pp:1895-1903, 2015.[33] F. Stenger, "Approximations via Whittaker's cardinal function" ,Journal of Approximation Theory, Vol,17(3), pp:222-240, 1976.[34] S. Alkan, "A numerical method for solution of integro-differential equations of fractional order", Sakarya University Journal of Science, Vol.21(2), pp:82-89, 2017.[35] E. T. Whittaker, "On the functions which are represented by the expansions of the interpolation theory", Proceeding of the Royal Society of Edinburgh, Vol.35, pp:181-194, 1915.[36] J. M. Whittaker, "Interpolation Function Theory", Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press, London, 1935.[37] S. Alkan, "A new solution method for nonlinear fractional integro-differential equations", Discrete and Continuous Dynamics Systems-S, Vol.8(6), pp:1065-1077, 2015.[38] A. Atangana, R. T. Alqahtani, "Modelling the spread of river blindness disease via the caputo fractional derivative and the beta-derivative", Entropy, Vol.18(2), pp:40, 2016.[39] F. Stenger, "Integration formulae based on the trapezoidal formula", IMA Journal of Applied Mathematics, Vol.12(1), pp:103-114, 1973.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Sebahat Ebru Daş 0000-0002-4746-8140

Publication Date December 31, 2018
Acceptance Date December 11, 2018
Published in Issue Year 2018 Volume: 30 Issue: 4

Cite

APA Daş, S. E. (2018). APPROXIMATE SOLUTIONS OF FRACTIONAL BOUNDARY VALUE PROBLEMS BASED ON BETA FRACTIONAL DERIVATIVE. Marmara Fen Bilimleri Dergisi, 30(4), 478-486. https://doi.org/10.7240/marufbd.440412
AMA Daş SE. APPROXIMATE SOLUTIONS OF FRACTIONAL BOUNDARY VALUE PROBLEMS BASED ON BETA FRACTIONAL DERIVATIVE. MFBD. December 2018;30(4):478-486. doi:10.7240/marufbd.440412
Chicago Daş, Sebahat Ebru. “APPROXIMATE SOLUTIONS OF FRACTIONAL BOUNDARY VALUE PROBLEMS BASED ON BETA FRACTIONAL DERIVATIVE”. Marmara Fen Bilimleri Dergisi 30, no. 4 (December 2018): 478-86. https://doi.org/10.7240/marufbd.440412.
EndNote Daş SE (December 1, 2018) APPROXIMATE SOLUTIONS OF FRACTIONAL BOUNDARY VALUE PROBLEMS BASED ON BETA FRACTIONAL DERIVATIVE. Marmara Fen Bilimleri Dergisi 30 4 478–486.
IEEE S. E. Daş, “APPROXIMATE SOLUTIONS OF FRACTIONAL BOUNDARY VALUE PROBLEMS BASED ON BETA FRACTIONAL DERIVATIVE”, MFBD, vol. 30, no. 4, pp. 478–486, 2018, doi: 10.7240/marufbd.440412.
ISNAD Daş, Sebahat Ebru. “APPROXIMATE SOLUTIONS OF FRACTIONAL BOUNDARY VALUE PROBLEMS BASED ON BETA FRACTIONAL DERIVATIVE”. Marmara Fen Bilimleri Dergisi 30/4 (December 2018), 478-486. https://doi.org/10.7240/marufbd.440412.
JAMA Daş SE. APPROXIMATE SOLUTIONS OF FRACTIONAL BOUNDARY VALUE PROBLEMS BASED ON BETA FRACTIONAL DERIVATIVE. MFBD. 2018;30:478–486.
MLA Daş, Sebahat Ebru. “APPROXIMATE SOLUTIONS OF FRACTIONAL BOUNDARY VALUE PROBLEMS BASED ON BETA FRACTIONAL DERIVATIVE”. Marmara Fen Bilimleri Dergisi, vol. 30, no. 4, 2018, pp. 478-86, doi:10.7240/marufbd.440412.
Vancouver Daş SE. APPROXIMATE SOLUTIONS OF FRACTIONAL BOUNDARY VALUE PROBLEMS BASED ON BETA FRACTIONAL DERIVATIVE. MFBD. 2018;30(4):478-86.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr