Research Article
BibTex RIS Cite
Year 2023, , 339 - 343, 29.09.2023
https://doi.org/10.5472/marumj.1368021

Abstract

References

  • Zarbock A, Hollmann MW. Perioperative organ failure: A preventable complication? Anesth Analg 2020;131:1663-5. doi:10.1213/ANE.000.000.0000005244
  • De Backer D, Orbegozo Cortes D, Donadello K, Vincent JL. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence 2014;5:73-9. doi:10.4161/viru.26482
  • Van Beest P, Wietasch G, Scheeren T, Spronk P, Kuiper M. Clinical review: use of venous oxygen saturations as a goal – a yet unfinished puzzle. Crit Care 2011;15:232. doi:10.1186/ cc10351
  • Vellinga NAR, Boerma EC, Koopmans M, Donati A, Dubin A, Shapiro NI. Mildly elevated lactate levels are associated with microcirculatory flow abnormalities and increased mortality: a microSOAP post hoc analysis. Crit Care 2017;21:255. doi:10.1186/s13054.017.1842-7
  • Huette P, Beyls C, Mallat J, et al. Central venous-to-arterial CO(2) difference is a poor tool to predict adverse outcomes after cardiac surgery: a retrospective study. Can J Anaesth 2021;68:467-76. doi:10.1007/s12630.020.01881-4
  • Zhang X, Xuan W, Yin P, Wang L, Wu X, Wu Q. Gastric tonometry guided therapy in critical care patients: a systematic review and meta-analysis. Crit Care 2015;19:22. doi:10.1186/ s13054.015.0739-6
  • Senarathna J, Rege A, Li N, Thakor NV. Laser Speckle Contrast Imaging: theory, instrumentation and applications. IEEE Rev Biomed Eng 2013;6:99-110. doi:10.1109/RBME.2013.224.3140
  • Zheng C, Lau LW, Cha J. Dual-display laparoscopic laser speckle contrast imaging for real-time surgical assistance. Biomed Opt Express 2018;9:5962-81. doi:10.1364/BOE.9.005962
  • Dubin A, Henriquez E, Hernandez G. Monitoring peripheral perfusion and microcirculation. Curr Opin Crit Care 2018;24:173-80. doi:10.1097/MCC.000.000.0000000495
  • Neubauer-Geryk J, Hoffmann M, Wielicka M, et al. Current methods for the assessment of skin microcirculation: Part 1. Postepy Dermatol Alergol 2019;36:247-54. doi:10.5114/ ada.2019.83656
  • Neubauer-Geryk J, Hoffmann M, Wielicka M, Piec K, Kozera G, Bieniaszewski L. Current methods for the assessment of skin microcirculation: Part 2. Postepy Dermatol Alergol 2019;36:377-81. doi:10.5114/ada.2019.83657
  • Holowatz LA, Thompson-Torgerson CS, Kenney WL. The human cutaneous circulation as a model of generalized microvascular function. J Appl Physiol (1985) 2008;105:370-2. doi:10.1152/japplphysiol.00858.2007
  • RG IJ, de Jongh RT, Beijk MA, et al. Individuals at increased coronary heart disease risk are characterized by an impaired microvascular function in skin. Eur J Clin Invest 2003;33:536- 42. doi:10.1046/j.1365-2362.2003.01179.x
  • Vincent JL, Rhodes A, Perel A, et al. Clinical review: Update on hemodynamic monitoring—a consensus of 16. Crit Care 2011;15:229. doi:10.1186/cc10291
  • Dyson A, Cone S, Singer M, Ackland GL. Microvascular and macrovascular flow are uncoupled in early polymicrobial sepsis. Br J Anaesth 2012;108:973-8. doi:10.1093/bja/aes093
  • Wu Y, Ren J, Zhou B, et al. Laser speckle contrast imaging for measurement of hepatic microcirculation during the sepsis: a novel tool for early detection of microcirculation dysfunction. Microvasc Res 2015;97:137-46. doi:10.1016/j.mvr.2014.10.006
  • De Backer D, Donadello K, Sakr Y, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med 2013;41:791-9. doi:10.1097/CCM.0b013e3182742e8b
  • Huber W, Zanner R, Schneider G, Schmid R, Lahmer T. Assessment of regional perfusion and organ function: Less and non-invasive techniques. Front Med (Lausanne) 2019;6:50. doi:10.3389/fmed.2019.00050
  • Briers D, Duncan DD, Hirst E, et al. Laser speckle contrast imaging: theoretical and practical limitations. J Biomed Opt 2013;18:066018. doi:10.1117/1.JBO.18.6.066018
  • Ambrus R, Strandby RB, Svendsen LB, Achiam MP, Steffensen JF, Sondergaard Svendsen MB. Laser speckle contrast imaging for monitoring changes in microvascular blood flow. Eur Surg Res 2016;56:87-96. doi:10.1159/000442790
  • Eriksson S, Nilsson J, Lindell G, Sturesson C. Laser speckle contrast imaging for intraoperative assessment of liver microcirculation: a clinical pilot study. Med Devices (Auckl) 2014;7:257-61. doi:10.2147/MDER.S63393
  • Barcelos A, Lamas C, Tibirica E. Evaluation of microvascular endothelial function in patients with infective endocarditis using laser speckle contrast imaging and skin video-capillaroscopy: research proposal of a case control prospective study. BMC Res Notes 2017;10:342. doi:10.1186/s13104.017.2660-3
  • Feuer DS, Handberg EM, Mehrad B, et al. Microvascular Dysfunction as a Systemic Disease: A Review of the Evidence. Am J Med 2022;135:1059-68. doi:10.1016/j.amjmed.2022.04.006
  • Gaillard-Bigot F, Roustit M, Blaise S, et al. Abnormal amplitude and kinetics of digital postocclusive reactive hyperemia in systemic sclerosis. Microvasc Res 2014;94:90-5. doi:10.1016/j. mvr.2014.05.007
  • Kiss F, Molnar L, Hajdu E, et al. Skin microcirculatory changes reflect early the circulatory deterioration in a fulminant sepsis model in the pig. Acta Cir Bras 2015;30:470-7. doi:10.1590/ S0102.865.0201500.700.00004
  • Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008;134:172-8. doi:10.1378/chest.07-2331
  • Vincent JL, Pelosi P, Pearse R, et al. Perioperative cardiovascular monitoring of high risk patients: a consensus of 12. Crit Care 2015; 19:224. doi: 10.1186/s13054.015.0932-7
  • Margouta A, Anyfanti P, Lazaridis A, et al. Blunted microvascular reactivity in psoriasis patients in the absence of cardiovascular disease, as assessed by laser speckle contrast imaging. Life (Basel) 2022;12:1796. doi:10.3390/life12111796

Monitoring tissue perfusion during extracorporeal circulation with laser speckle contrast imaging

Year 2023, , 339 - 343, 29.09.2023
https://doi.org/10.5472/marumj.1368021

Abstract

Objective: The laser speckle contrast imaging (LSCI) system is a method to evaluate microcirculation. The primary aim of our study
is to evaluate the relationship between LSCI and perfusion markers in coronary artery bypass grafting (CABG). Our second aim is to
investigate the relationship between LSCI and extubation time in the intensive care unit.
Patients and Methods: Fifteen patients aged 43-80 years who will undergo on-pump CABG were included in the prospective study.
Mean arterial pressure (mmHg), heart rate (min-1), PO2 (mmHg), PCO2 (mmHg) and lactate (mmol/L) levels were measured preinduction,
post-induction, 10th minute of the extracorporeal circulation, post-crossclamp, and post-operatively. At the same time
points, LSCI values from the skin were measured and recorded. The intubation times of the patients were also recorded.
Results: There was no significant change in systemic tissue perfusion markers (P>0.05). LSCI perfusion values decreased significantly
from induction and remained low until the end of surgery (P<0.05). The perfusion value (98±11 PU) of the patients who were
intubated for less than 8 hours was better than the perfusion value (52±4.8 PU) of the patients who were intubated for more than 8
hours (P<0.05).
Conclusion: In our study, a significant change occurred in skin tissue perfusion before systemic perfusion parameters in CABG, and
low perfusion was associated with prolonged intubation time.

References

  • Zarbock A, Hollmann MW. Perioperative organ failure: A preventable complication? Anesth Analg 2020;131:1663-5. doi:10.1213/ANE.000.000.0000005244
  • De Backer D, Orbegozo Cortes D, Donadello K, Vincent JL. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence 2014;5:73-9. doi:10.4161/viru.26482
  • Van Beest P, Wietasch G, Scheeren T, Spronk P, Kuiper M. Clinical review: use of venous oxygen saturations as a goal – a yet unfinished puzzle. Crit Care 2011;15:232. doi:10.1186/ cc10351
  • Vellinga NAR, Boerma EC, Koopmans M, Donati A, Dubin A, Shapiro NI. Mildly elevated lactate levels are associated with microcirculatory flow abnormalities and increased mortality: a microSOAP post hoc analysis. Crit Care 2017;21:255. doi:10.1186/s13054.017.1842-7
  • Huette P, Beyls C, Mallat J, et al. Central venous-to-arterial CO(2) difference is a poor tool to predict adverse outcomes after cardiac surgery: a retrospective study. Can J Anaesth 2021;68:467-76. doi:10.1007/s12630.020.01881-4
  • Zhang X, Xuan W, Yin P, Wang L, Wu X, Wu Q. Gastric tonometry guided therapy in critical care patients: a systematic review and meta-analysis. Crit Care 2015;19:22. doi:10.1186/ s13054.015.0739-6
  • Senarathna J, Rege A, Li N, Thakor NV. Laser Speckle Contrast Imaging: theory, instrumentation and applications. IEEE Rev Biomed Eng 2013;6:99-110. doi:10.1109/RBME.2013.224.3140
  • Zheng C, Lau LW, Cha J. Dual-display laparoscopic laser speckle contrast imaging for real-time surgical assistance. Biomed Opt Express 2018;9:5962-81. doi:10.1364/BOE.9.005962
  • Dubin A, Henriquez E, Hernandez G. Monitoring peripheral perfusion and microcirculation. Curr Opin Crit Care 2018;24:173-80. doi:10.1097/MCC.000.000.0000000495
  • Neubauer-Geryk J, Hoffmann M, Wielicka M, et al. Current methods for the assessment of skin microcirculation: Part 1. Postepy Dermatol Alergol 2019;36:247-54. doi:10.5114/ ada.2019.83656
  • Neubauer-Geryk J, Hoffmann M, Wielicka M, Piec K, Kozera G, Bieniaszewski L. Current methods for the assessment of skin microcirculation: Part 2. Postepy Dermatol Alergol 2019;36:377-81. doi:10.5114/ada.2019.83657
  • Holowatz LA, Thompson-Torgerson CS, Kenney WL. The human cutaneous circulation as a model of generalized microvascular function. J Appl Physiol (1985) 2008;105:370-2. doi:10.1152/japplphysiol.00858.2007
  • RG IJ, de Jongh RT, Beijk MA, et al. Individuals at increased coronary heart disease risk are characterized by an impaired microvascular function in skin. Eur J Clin Invest 2003;33:536- 42. doi:10.1046/j.1365-2362.2003.01179.x
  • Vincent JL, Rhodes A, Perel A, et al. Clinical review: Update on hemodynamic monitoring—a consensus of 16. Crit Care 2011;15:229. doi:10.1186/cc10291
  • Dyson A, Cone S, Singer M, Ackland GL. Microvascular and macrovascular flow are uncoupled in early polymicrobial sepsis. Br J Anaesth 2012;108:973-8. doi:10.1093/bja/aes093
  • Wu Y, Ren J, Zhou B, et al. Laser speckle contrast imaging for measurement of hepatic microcirculation during the sepsis: a novel tool for early detection of microcirculation dysfunction. Microvasc Res 2015;97:137-46. doi:10.1016/j.mvr.2014.10.006
  • De Backer D, Donadello K, Sakr Y, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med 2013;41:791-9. doi:10.1097/CCM.0b013e3182742e8b
  • Huber W, Zanner R, Schneider G, Schmid R, Lahmer T. Assessment of regional perfusion and organ function: Less and non-invasive techniques. Front Med (Lausanne) 2019;6:50. doi:10.3389/fmed.2019.00050
  • Briers D, Duncan DD, Hirst E, et al. Laser speckle contrast imaging: theoretical and practical limitations. J Biomed Opt 2013;18:066018. doi:10.1117/1.JBO.18.6.066018
  • Ambrus R, Strandby RB, Svendsen LB, Achiam MP, Steffensen JF, Sondergaard Svendsen MB. Laser speckle contrast imaging for monitoring changes in microvascular blood flow. Eur Surg Res 2016;56:87-96. doi:10.1159/000442790
  • Eriksson S, Nilsson J, Lindell G, Sturesson C. Laser speckle contrast imaging for intraoperative assessment of liver microcirculation: a clinical pilot study. Med Devices (Auckl) 2014;7:257-61. doi:10.2147/MDER.S63393
  • Barcelos A, Lamas C, Tibirica E. Evaluation of microvascular endothelial function in patients with infective endocarditis using laser speckle contrast imaging and skin video-capillaroscopy: research proposal of a case control prospective study. BMC Res Notes 2017;10:342. doi:10.1186/s13104.017.2660-3
  • Feuer DS, Handberg EM, Mehrad B, et al. Microvascular Dysfunction as a Systemic Disease: A Review of the Evidence. Am J Med 2022;135:1059-68. doi:10.1016/j.amjmed.2022.04.006
  • Gaillard-Bigot F, Roustit M, Blaise S, et al. Abnormal amplitude and kinetics of digital postocclusive reactive hyperemia in systemic sclerosis. Microvasc Res 2014;94:90-5. doi:10.1016/j. mvr.2014.05.007
  • Kiss F, Molnar L, Hajdu E, et al. Skin microcirculatory changes reflect early the circulatory deterioration in a fulminant sepsis model in the pig. Acta Cir Bras 2015;30:470-7. doi:10.1590/ S0102.865.0201500.700.00004
  • Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008;134:172-8. doi:10.1378/chest.07-2331
  • Vincent JL, Pelosi P, Pearse R, et al. Perioperative cardiovascular monitoring of high risk patients: a consensus of 12. Crit Care 2015; 19:224. doi: 10.1186/s13054.015.0932-7
  • Margouta A, Anyfanti P, Lazaridis A, et al. Blunted microvascular reactivity in psoriasis patients in the absence of cardiovascular disease, as assessed by laser speckle contrast imaging. Life (Basel) 2022;12:1796. doi:10.3390/life12111796
There are 28 citations in total.

Details

Primary Language English
Subjects Surgery (Other)
Journal Section Original Research
Authors

Halim Ulugol This is me

Melis Tosun This is me

Ugur Aksu This is me

Esin Erkek This is me

Pinar Guclu This is me

Murat Okten This is me

Fevzi Toraman This is me

Publication Date September 29, 2023
Published in Issue Year 2023

Cite

APA Ulugol, H., Tosun, M., Aksu, U., Erkek, E., et al. (2023). Monitoring tissue perfusion during extracorporeal circulation with laser speckle contrast imaging. Marmara Medical Journal, 36(3), 339-343. https://doi.org/10.5472/marumj.1368021
AMA Ulugol H, Tosun M, Aksu U, Erkek E, Guclu P, Okten M, Toraman F. Monitoring tissue perfusion during extracorporeal circulation with laser speckle contrast imaging. Marmara Med J. September 2023;36(3):339-343. doi:10.5472/marumj.1368021
Chicago Ulugol, Halim, Melis Tosun, Ugur Aksu, Esin Erkek, Pinar Guclu, Murat Okten, and Fevzi Toraman. “Monitoring Tissue Perfusion During Extracorporeal Circulation With Laser Speckle Contrast Imaging”. Marmara Medical Journal 36, no. 3 (September 2023): 339-43. https://doi.org/10.5472/marumj.1368021.
EndNote Ulugol H, Tosun M, Aksu U, Erkek E, Guclu P, Okten M, Toraman F (September 1, 2023) Monitoring tissue perfusion during extracorporeal circulation with laser speckle contrast imaging. Marmara Medical Journal 36 3 339–343.
IEEE H. Ulugol, M. Tosun, U. Aksu, E. Erkek, P. Guclu, M. Okten, and F. Toraman, “Monitoring tissue perfusion during extracorporeal circulation with laser speckle contrast imaging”, Marmara Med J, vol. 36, no. 3, pp. 339–343, 2023, doi: 10.5472/marumj.1368021.
ISNAD Ulugol, Halim et al. “Monitoring Tissue Perfusion During Extracorporeal Circulation With Laser Speckle Contrast Imaging”. Marmara Medical Journal 36/3 (September 2023), 339-343. https://doi.org/10.5472/marumj.1368021.
JAMA Ulugol H, Tosun M, Aksu U, Erkek E, Guclu P, Okten M, Toraman F. Monitoring tissue perfusion during extracorporeal circulation with laser speckle contrast imaging. Marmara Med J. 2023;36:339–343.
MLA Ulugol, Halim et al. “Monitoring Tissue Perfusion During Extracorporeal Circulation With Laser Speckle Contrast Imaging”. Marmara Medical Journal, vol. 36, no. 3, 2023, pp. 339-43, doi:10.5472/marumj.1368021.
Vancouver Ulugol H, Tosun M, Aksu U, Erkek E, Guclu P, Okten M, Toraman F. Monitoring tissue perfusion during extracorporeal circulation with laser speckle contrast imaging. Marmara Med J. 2023;36(3):339-43.