Research Article
BibTex RIS Cite

Myrtus communis reduces radiation-induced genitourinary histopathological damage and apoptosis in rats: TROD-GROG-004 Study

Year 2025, Volume: 38 Issue: 3, 190 - 197, 10.10.2025

Abstract

Objective: To investigate the radioprotective and prophylactic effects of Myrtus communis (MC) in kidney, bladder, and ovary samples
in an animal model.
Materials and Methods: Female rats (n=30) were divided into four groups. The control group (C) (n=6) received only oral saline (SF)
for four days. Ionizing radiation (IR) groups were organized as follows: “IR group (IR)” (n=8) received oral SF for four days starting on
the day of administration; “MC treatment group (MC-tx)” (n=8) received oral MC for four days beginning on the day of irradiation;
and “MC pretreatment group (MC-Ptx)” (n=8) received oral MC for a total of eight days, starting four days before irradiation. MC was
administered via oral gavage. Irradiation was performed at 10 Gray (Gy) in a single dose. On the fourth day of irradiation, all rats were
sacrificed, the tissues were examined histopathologically, and caspase-9 and caspase-3 levels were examined using western blotting to
assess mitochondrial apoptosis.
Results: Radiation-induced damage decreased across all treatment groups. Caspase-9 and caspase-3 levels were significantly lower in
the MC-Ptx and MC-tx groups compared to the IR group in all tissues (p<0.01).
Conclusion: Myrtus communis significantly ameliorated IR-induced damage to genitourinary tissues by both prophylactic and
therapeutic applications. Therefore, the findings of this study may contribute to the development of new strategies in radioprotection.

References

  • Kooti W, Servatyari K, Behzadifar M, et al. Effective medicinal plant in cancer treatment, Part 2: review study. J Evid Based Complementary Altern Med 2017;22:982-95. doi: 10.1177/215.658.7217696927. doi: 10.1177/215.658.7217696927
  • Held KD. Radiobiology for the Radiologist. Hall EJ and Giaccia A J, editors. 6th edition. Radiat Res 2006;166:816-7.
  • Trifiletti DM, Zaorsky NG, eds. Absolute Clinical Radiation Oncology Review. 1st edition. Cham: Springer International Publishing, 2019.
  • Azzam EI, Jay-Gerin J-P, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 2012;327:48-60. doi: 10.1016/j.canlet.2011.12.012.
  • Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM. Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 2014;21:260-92. doi: 10.1089/ars.2013.5489.
  • Tretiakova I, Blaesius D, Maxia L, et al. Myrtucommulone from Myrtus communis induces apoptosis in cancer cells via the mitochondrial pathway involving caspase-9. Apoptosis 2008;13:119-31. doi: 10.1007/s10495.007.0150-0.
  • Kim S, Kim S-W, Han S-J, et al. Molecular mechanism and prevention strategy of chemotherapy – and radiotherapyinduced ovarian damage. Int J Mol Sci 2021;22:7484. doi: 10.3390/ijms22147484.
  • Chorbińska J, Krajewski W, Zdrojowy R. Urological complications after radiation therapy-nothing ventured, nothing gained: a narrative review. Transl Cancer Res 2021;10:1096-118. doi: 10.21037/tcr-20-2589.
  • Stroud JS, Mutch D, Rader J, Powell M, Thaker PH, Grigsby PW.Effects of cancer treatment on ovarian function. Fertil Steril 2009;92:417-27. 7. doi: 10.1016/j.fertnstert.2008.07.1714.
  • Klaus R, Niyazi M, Lange-Sperandio B. Radiation-induced kidney toxicity: molecular and cellular pathogenesis. Radiat Oncol 2021;16:43. . doi: 10.1186/s13014.021.01764-y.
  • Wallace WHB, Thomson AB, Kelsey TW. The radiosensitivity of the human oocyte. Hum Reprod 2003;18:117-21. doi: 10.1093/humrep/deg016.
  • Lushbaugh CC, Casarett GW. The effects of gonadal irradiation in clinical radiation therapy: a review. Cancer 1976;37:1111- 25. doi: 10.1002/1097-0142(197602)37:2+<1111::aidcncr282.037.0821> 3.0.co;2-e.
  • Wo JY, Viswanathan AN. Impact of radiotherapy on fertility, pregnancy, and neonatal outcomes in female cancer patients. Int J Radiat Oncol Biol Phys 2009;73:1304-12. doi: 10.1016/j. ijrobp.2008.12.016.
  • Atasoy BM, Deniz M, Dane F, et al. Prophylactic feeding with immune-enhanced diet ameliorates chemoradiation-induced gastrointestinal injury in rats. Int J Radiat Biol 2010;86:867-79. doi: 10.3109/09553.002.2010.487026.
  • Dong X-Z, Wang Y-N, Tan X, et al. Protective effect of JXT ethanol extract on radiation-induced hematopoietic alteration and oxidative stress in the liver. Oxid Med Cell Longev 2018;2018:9017835. doi: 10.1155/2018/9017835
  • Hennia A, Miguel MG, Nemmiche S. Antioxidant activity of Myrtus communis L. and Myrtus nivellei Batt. & Trab. extracts: A brief review. Med (Basel, Switzerland) 2018;5:89, doi: 10.3390/medicines5030089.
  • Mansour H, Ismael N, Hafez H. Ameliorative effect of septilin, an ayurvedic preparation against γ-irradiationinduced oxidative stress and tissue injury in rats. Indian J Biochem Biophys 2014;51:135-41.
  • Vasconcelos TNC, Proença CEB, Ahmad B, et al. Myrteae phylogeny, calibration, biogeography and diversification patterns: Increased understanding in the most species rich tribe of Myrtaceae. Mol Phylogenet Evol 2017;109:113-37. doi: 10.1016/j.ympev.2017.01.002.
  • Baharvand-Ahmadi B, Bahmani M, Naghdi, N et al. Review on phytochemistry, therapeutic and pharmacological effects of myrtus (Myrtus communis). Der Pharm Lett 2015;7:160-5.
  • Romani A, Pinelli P, Mulinacci N, et al. Identification and quantitation of polyphenols in leaves of Myrtus communis L. Chromatographia 1999;49:17-20. doi: 10.1007/BF02467181.
  • Sisay M, Gashaw T. Ethnobotanical, ethnopharmacological, and phytochemical studies of Myrtus communis linn: a popular herb in unani system of medicine. J Evid Based Complementary Altern Med 2017;22:1035–43. . doi: 10.1177/215.658.7217718958.
  • Sen A, Kurkcuoglu M, Yıldırım A, et al. Chemical and biological profiles of essential oil from different parts of Myrtus communis L. subsp. communis from Turkey. Agric Conspec Sci 2020;85:71-8.
  • Sen A, Ozkan S, Recebova K, et al. Effects of myrtus communis extract treatment in bile duct ligated rats. J Surg Res 2016;205:359-67. doi: 10.1016/j.jss.2016.06.094.
  • Sen A, Yuksel M, Bulut G, et al. Therapeutic potential of myrtus communis subsp. communis extract against acetic acid-induced colonic inflammation in rats. J Food Biochem 2017;41:e12297. doi: 10.1111/jfbc.12297
  • Arslan S, Ozcan O, Gokmen B, et al. Myrtle improves renovascular hypertension-induced oxidative damage in heart, kidney, and aortic tissue. Biologia (Bratisl) 2022;7:1877- 88. doi: 10.1007/s11756.022.01039-1.
  • Lenarczyk M, Lam V, Jensen E, et al. Cardiac injury after 10 gy total body irradiation: indirect role of effects on abdominal organs. Radiat Res 2013;180:247-58. doi: 10.1667/RR3292.1.
  • Kal HB, van Kempen-Harteveld ML. Renal dysfunction after total body irradiation: dose-effect relationship. Int J Radiat Oncol Biol Phys 2006;65:1228-32. doi: 10.1016/j. ijrobp.2006.02.021.
  • Cetiner M, Sener G, Sehirli AO, et al. Taurine protects against methotrexate-induced toxicity and inhibits leukocyte death. Toxicol Appl Pharmacol 2005;209:39-50. doi: 10.1016/j. taap.2005.03.009.
  • Erkanli Senturk G, Erkanli K, Aydin U, et al. The protective effect of oxytocin on ischemia/reperfusion injury in rat urinary bladder. Peptides 2013;40:82-8. doi: 10.1016/j. peptides.2012.12.006.
  • Tekin YB, Tumkaya L, Mercantepe T, et al. Evaluation of the protective effect of coenzyme Q10 against x-ray irradiationinduced ovarian injury. J Obstet Gynaecol Res 2024;50:1242- 9. doi: 10.1111/jog.15966.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-75.
  • Aykac A, Ozbeyli D, Uncu M, et al. Evaluation of the protective effect of Myrtus communis in scopolamine-induced Alzheimer model through cholinergic receptors. Gene 2019;689:194-201. doi: 10.1016/j.gene.2018.12.007.
  • Hosseinimehr SJ. Flavonoids and genomic instability induced by ionizing radiation. Drug Discov Today 2010;15:907-18. doi: 10.1016/j.drudis.2010.09.005.
  • Vasin M V. Bioflavonoids as important component of biological protection from ionizing radiation. Food Nutr Sci 2014;5:472-9. doi: 10.4236/fns.2014.55056
  • Wang Q, Xie C, Xi S, et al. Radioprotective effect of flavonoids on ionizing radiation-induced brain damage. Molecules 2020;25:5719. doi: 10.3390/molecules25235719.
  • Seif F, Bayatiani MR, Ansarihadipour H, Habibi G, Sadelaji S. Radiation protection properties of Myrtus communis against oxidation caused by whole-body exposure of mice. Iran J Med Phys 2018;15:70.
  • Zhao D, Qu H, Guo J, et al. Protective effects of myrtol standardized against radiation-induced lung injury. Cell Physiol Biochem 2016;38:619-34. doi: 10.1159/000438655
  • Duncan FE, Kimler BF, Briley SM. Combating radiation therapy-induced damage to the ovarian environment. Future Oncol 2016;12:1687-90. doi: 10.2217/fon-2016-0121
  • Jouhmany O, Ebrahim N, Ikhtiar A. Assessment of radio protective effects of Myrtus communis l. on human lymphocytes irradiated in vitro by gamma-rays using micronucleus assay on binucleated human lymphocytes. Int J Sci Res Biol Sci 2020;7:53-8.
  • Zhao W, Robbins MEC. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 2009;16:130-43. doi: 10.217.409.2986709.787.002790
  • Sharma A, Wairkar S. Flavonoids for treating pulmonary fibrosis: Present status and future prospects. Phytother Res 2024;38:4406-23.
  • Jabri MA, Marzouki L, Sebai H. Myrtle berries seeds aqueous extract abrogates chronic alcohol consumption-induced erythrocytes osmotic stability disturbance, haematological and biochemical toxicity. Lipids Health Dis 2018;17:94. doi: 10.1186/s12944.018.0746-0.
  • Abotaleb M, Samuel SM, Varghese E, et al. Flavonoids in cancer and apoptosis. Cancers (Basel) 2018;11. doi: 10.3390/ cancers11010028.

Year 2025, Volume: 38 Issue: 3, 190 - 197, 10.10.2025

Abstract

References

  • Kooti W, Servatyari K, Behzadifar M, et al. Effective medicinal plant in cancer treatment, Part 2: review study. J Evid Based Complementary Altern Med 2017;22:982-95. doi: 10.1177/215.658.7217696927. doi: 10.1177/215.658.7217696927
  • Held KD. Radiobiology for the Radiologist. Hall EJ and Giaccia A J, editors. 6th edition. Radiat Res 2006;166:816-7.
  • Trifiletti DM, Zaorsky NG, eds. Absolute Clinical Radiation Oncology Review. 1st edition. Cham: Springer International Publishing, 2019.
  • Azzam EI, Jay-Gerin J-P, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 2012;327:48-60. doi: 10.1016/j.canlet.2011.12.012.
  • Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM. Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 2014;21:260-92. doi: 10.1089/ars.2013.5489.
  • Tretiakova I, Blaesius D, Maxia L, et al. Myrtucommulone from Myrtus communis induces apoptosis in cancer cells via the mitochondrial pathway involving caspase-9. Apoptosis 2008;13:119-31. doi: 10.1007/s10495.007.0150-0.
  • Kim S, Kim S-W, Han S-J, et al. Molecular mechanism and prevention strategy of chemotherapy – and radiotherapyinduced ovarian damage. Int J Mol Sci 2021;22:7484. doi: 10.3390/ijms22147484.
  • Chorbińska J, Krajewski W, Zdrojowy R. Urological complications after radiation therapy-nothing ventured, nothing gained: a narrative review. Transl Cancer Res 2021;10:1096-118. doi: 10.21037/tcr-20-2589.
  • Stroud JS, Mutch D, Rader J, Powell M, Thaker PH, Grigsby PW.Effects of cancer treatment on ovarian function. Fertil Steril 2009;92:417-27. 7. doi: 10.1016/j.fertnstert.2008.07.1714.
  • Klaus R, Niyazi M, Lange-Sperandio B. Radiation-induced kidney toxicity: molecular and cellular pathogenesis. Radiat Oncol 2021;16:43. . doi: 10.1186/s13014.021.01764-y.
  • Wallace WHB, Thomson AB, Kelsey TW. The radiosensitivity of the human oocyte. Hum Reprod 2003;18:117-21. doi: 10.1093/humrep/deg016.
  • Lushbaugh CC, Casarett GW. The effects of gonadal irradiation in clinical radiation therapy: a review. Cancer 1976;37:1111- 25. doi: 10.1002/1097-0142(197602)37:2+<1111::aidcncr282.037.0821> 3.0.co;2-e.
  • Wo JY, Viswanathan AN. Impact of radiotherapy on fertility, pregnancy, and neonatal outcomes in female cancer patients. Int J Radiat Oncol Biol Phys 2009;73:1304-12. doi: 10.1016/j. ijrobp.2008.12.016.
  • Atasoy BM, Deniz M, Dane F, et al. Prophylactic feeding with immune-enhanced diet ameliorates chemoradiation-induced gastrointestinal injury in rats. Int J Radiat Biol 2010;86:867-79. doi: 10.3109/09553.002.2010.487026.
  • Dong X-Z, Wang Y-N, Tan X, et al. Protective effect of JXT ethanol extract on radiation-induced hematopoietic alteration and oxidative stress in the liver. Oxid Med Cell Longev 2018;2018:9017835. doi: 10.1155/2018/9017835
  • Hennia A, Miguel MG, Nemmiche S. Antioxidant activity of Myrtus communis L. and Myrtus nivellei Batt. & Trab. extracts: A brief review. Med (Basel, Switzerland) 2018;5:89, doi: 10.3390/medicines5030089.
  • Mansour H, Ismael N, Hafez H. Ameliorative effect of septilin, an ayurvedic preparation against γ-irradiationinduced oxidative stress and tissue injury in rats. Indian J Biochem Biophys 2014;51:135-41.
  • Vasconcelos TNC, Proença CEB, Ahmad B, et al. Myrteae phylogeny, calibration, biogeography and diversification patterns: Increased understanding in the most species rich tribe of Myrtaceae. Mol Phylogenet Evol 2017;109:113-37. doi: 10.1016/j.ympev.2017.01.002.
  • Baharvand-Ahmadi B, Bahmani M, Naghdi, N et al. Review on phytochemistry, therapeutic and pharmacological effects of myrtus (Myrtus communis). Der Pharm Lett 2015;7:160-5.
  • Romani A, Pinelli P, Mulinacci N, et al. Identification and quantitation of polyphenols in leaves of Myrtus communis L. Chromatographia 1999;49:17-20. doi: 10.1007/BF02467181.
  • Sisay M, Gashaw T. Ethnobotanical, ethnopharmacological, and phytochemical studies of Myrtus communis linn: a popular herb in unani system of medicine. J Evid Based Complementary Altern Med 2017;22:1035–43. . doi: 10.1177/215.658.7217718958.
  • Sen A, Kurkcuoglu M, Yıldırım A, et al. Chemical and biological profiles of essential oil from different parts of Myrtus communis L. subsp. communis from Turkey. Agric Conspec Sci 2020;85:71-8.
  • Sen A, Ozkan S, Recebova K, et al. Effects of myrtus communis extract treatment in bile duct ligated rats. J Surg Res 2016;205:359-67. doi: 10.1016/j.jss.2016.06.094.
  • Sen A, Yuksel M, Bulut G, et al. Therapeutic potential of myrtus communis subsp. communis extract against acetic acid-induced colonic inflammation in rats. J Food Biochem 2017;41:e12297. doi: 10.1111/jfbc.12297
  • Arslan S, Ozcan O, Gokmen B, et al. Myrtle improves renovascular hypertension-induced oxidative damage in heart, kidney, and aortic tissue. Biologia (Bratisl) 2022;7:1877- 88. doi: 10.1007/s11756.022.01039-1.
  • Lenarczyk M, Lam V, Jensen E, et al. Cardiac injury after 10 gy total body irradiation: indirect role of effects on abdominal organs. Radiat Res 2013;180:247-58. doi: 10.1667/RR3292.1.
  • Kal HB, van Kempen-Harteveld ML. Renal dysfunction after total body irradiation: dose-effect relationship. Int J Radiat Oncol Biol Phys 2006;65:1228-32. doi: 10.1016/j. ijrobp.2006.02.021.
  • Cetiner M, Sener G, Sehirli AO, et al. Taurine protects against methotrexate-induced toxicity and inhibits leukocyte death. Toxicol Appl Pharmacol 2005;209:39-50. doi: 10.1016/j. taap.2005.03.009.
  • Erkanli Senturk G, Erkanli K, Aydin U, et al. The protective effect of oxytocin on ischemia/reperfusion injury in rat urinary bladder. Peptides 2013;40:82-8. doi: 10.1016/j. peptides.2012.12.006.
  • Tekin YB, Tumkaya L, Mercantepe T, et al. Evaluation of the protective effect of coenzyme Q10 against x-ray irradiationinduced ovarian injury. J Obstet Gynaecol Res 2024;50:1242- 9. doi: 10.1111/jog.15966.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-75.
  • Aykac A, Ozbeyli D, Uncu M, et al. Evaluation of the protective effect of Myrtus communis in scopolamine-induced Alzheimer model through cholinergic receptors. Gene 2019;689:194-201. doi: 10.1016/j.gene.2018.12.007.
  • Hosseinimehr SJ. Flavonoids and genomic instability induced by ionizing radiation. Drug Discov Today 2010;15:907-18. doi: 10.1016/j.drudis.2010.09.005.
  • Vasin M V. Bioflavonoids as important component of biological protection from ionizing radiation. Food Nutr Sci 2014;5:472-9. doi: 10.4236/fns.2014.55056
  • Wang Q, Xie C, Xi S, et al. Radioprotective effect of flavonoids on ionizing radiation-induced brain damage. Molecules 2020;25:5719. doi: 10.3390/molecules25235719.
  • Seif F, Bayatiani MR, Ansarihadipour H, Habibi G, Sadelaji S. Radiation protection properties of Myrtus communis against oxidation caused by whole-body exposure of mice. Iran J Med Phys 2018;15:70.
  • Zhao D, Qu H, Guo J, et al. Protective effects of myrtol standardized against radiation-induced lung injury. Cell Physiol Biochem 2016;38:619-34. doi: 10.1159/000438655
  • Duncan FE, Kimler BF, Briley SM. Combating radiation therapy-induced damage to the ovarian environment. Future Oncol 2016;12:1687-90. doi: 10.2217/fon-2016-0121
  • Jouhmany O, Ebrahim N, Ikhtiar A. Assessment of radio protective effects of Myrtus communis l. on human lymphocytes irradiated in vitro by gamma-rays using micronucleus assay on binucleated human lymphocytes. Int J Sci Res Biol Sci 2020;7:53-8.
  • Zhao W, Robbins MEC. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 2009;16:130-43. doi: 10.217.409.2986709.787.002790
  • Sharma A, Wairkar S. Flavonoids for treating pulmonary fibrosis: Present status and future prospects. Phytother Res 2024;38:4406-23.
  • Jabri MA, Marzouki L, Sebai H. Myrtle berries seeds aqueous extract abrogates chronic alcohol consumption-induced erythrocytes osmotic stability disturbance, haematological and biochemical toxicity. Lipids Health Dis 2018;17:94. doi: 10.1186/s12944.018.0746-0.
  • Abotaleb M, Samuel SM, Varghese E, et al. Flavonoids in cancer and apoptosis. Cancers (Basel) 2018;11. doi: 10.3390/ cancers11010028.
There are 43 citations in total.

Details

Primary Language English
Subjects Surgery (Other)
Journal Section Original Research
Authors

Selnur Özkurt 0000-0002-0702-2830

Bedriye Doğan 0000-0002-8726-3801

Nagehan Özyılmaz This is me 0000-0002-8453-0089

Aslı Aykaç 0000-0002-4885-5070

Büşra Ertaş 0000-0001-8374-1098

Ali Şen 0000-0002-2144-5741

Cemile Ceylan 0000-0001-6423-8956

Feriha Ercan 0000-0003-2339-5669

Beste Atasoy 0000-0003-1320-9105

Publication Date October 10, 2025
Submission Date June 1, 2025
Acceptance Date August 13, 2025
Published in Issue Year 2025 Volume: 38 Issue: 3

Cite

APA Özkurt, S., Doğan, B., Özyılmaz, N., … Aykaç, A. (2025). Myrtus communis reduces radiation-induced genitourinary histopathological damage and apoptosis in rats: TROD-GROG-004 Study. Marmara Medical Journal, 38(3), 190-197.
AMA Özkurt S, Doğan B, Özyılmaz N, et al. Myrtus communis reduces radiation-induced genitourinary histopathological damage and apoptosis in rats: TROD-GROG-004 Study. Marmara Med J. October 2025;38(3):190-197.
Chicago Özkurt, Selnur, Bedriye Doğan, Nagehan Özyılmaz, Aslı Aykaç, Büşra Ertaş, Ali Şen, Cemile Ceylan, Feriha Ercan, and Beste Atasoy. “Myrtus Communis Reduces Radiation-Induced Genitourinary Histopathological Damage and Apoptosis in Rats: TROD-GROG-004 Study”. Marmara Medical Journal 38, no. 3 (October 2025): 190-97.
EndNote Özkurt S, Doğan B, Özyılmaz N, Aykaç A, Ertaş B, Şen A, Ceylan C, Ercan F, Atasoy B (October 1, 2025) Myrtus communis reduces radiation-induced genitourinary histopathological damage and apoptosis in rats: TROD-GROG-004 Study. Marmara Medical Journal 38 3 190–197.
IEEE S. Özkurt, B. Doğan, N. Özyılmaz, A. Aykaç, B. Ertaş, A. Şen, C. Ceylan, F. Ercan, and B. Atasoy, “Myrtus communis reduces radiation-induced genitourinary histopathological damage and apoptosis in rats: TROD-GROG-004 Study”, Marmara Med J, vol. 38, no. 3, pp. 190–197, 2025.
ISNAD Özkurt, Selnur et al. “Myrtus Communis Reduces Radiation-Induced Genitourinary Histopathological Damage and Apoptosis in Rats: TROD-GROG-004 Study”. Marmara Medical Journal 38/3 (October2025), 190-197.
JAMA Özkurt S, Doğan B, Özyılmaz N, Aykaç A, Ertaş B, Şen A, Ceylan C, Ercan F, Atasoy B. Myrtus communis reduces radiation-induced genitourinary histopathological damage and apoptosis in rats: TROD-GROG-004 Study. Marmara Med J. 2025;38:190–197.
MLA Özkurt, Selnur et al. “Myrtus Communis Reduces Radiation-Induced Genitourinary Histopathological Damage and Apoptosis in Rats: TROD-GROG-004 Study”. Marmara Medical Journal, vol. 38, no. 3, 2025, pp. 190-7.
Vancouver Özkurt S, Doğan B, Özyılmaz N, Aykaç A, Ertaş B, Şen A, et al. Myrtus communis reduces radiation-induced genitourinary histopathological damage and apoptosis in rats: TROD-GROG-004 Study. Marmara Med J. 2025;38(3):190-7.