Research Article
BibTex RIS Cite

ÇOK AMAÇLI KARAR ALMA’DA BULANIK MANTIK VE BULANIK ANALİTİK HİYERARŞİ YÖNTEMİYLE BİR SİYASİ PARTİ İÇİN ADAY BELİRLEME ÇALIŞMASI

Year 2009, , 81 - 92, 10.01.2009
https://doi.org/10.14783/maruoneri.677337

Abstract

Gerçek hayatta karşılaşılan problemlerin çok büyük bir kısmı birden fazla amacı ve bu amaçlara ulaşmak için kullanılacak pek çok kriter ve alt kriterleri içermektedir. Karar alıcı çoğu zaman birbiri ile çelişen amaçları kesin bir değeri olmayan ve belirsiz veriler ile optimize etmeye çalışır. Bu çalışmada, çok amaçlı karar almada bulanık mantık sürecinin açıklanmasına ve Bulanık Analitik Hiyerarşi Prosesi (BAHP) yöntemiyle siyasi partiler için aday belirleme çalışması probleminin çözümüne yönelik bir algoritma önerilmiştir. Önerilen algoritma 29 Mart 2009 tarihinde gerçekleştirilecek olan yerel seçimlerde yerel yönetime aday gösterilecek olan adayın belirlenmesine yönelik olarak oluşturulmuştur. Aday adaylarının faktörler temelinde değerlendirilmesinde dilsel değişkenler kullanılmış ve bulanık ağırlıkların durulaştırılması a-kesme ve iyimserlik indeksi temelinde geliştirilen bir durulaştırma işlemi ile yapılmıştır.

References

  • [1] Gargano, M.L.; Marose, R.A. & Kleeck, L. (1991). An application of artifıcial neural Networks and genetic algorithms to personnel selection in the fmancial industry. Proceedings of the First International Conference on Artifıcial Intelligence Applications, 257-262.
  • [2] Miller, G.M. & Feinzig, S.L. (1993). Fuzzy sets and personnel selection: Discussion and an application. Journal of Occupational and Organizational Psychology, 66(1), 163-169.
  • [3] Liang, S.L. & Wang M.J. (1994). Personnel selection using fuzzy MCDM algorithm. European Journal of Operational Research, 78(2), 22-33.
  • [4] Karsak, E.E. (2001). Personnel selection using a fuzzy MCDM approach based on ideal and anti-ideal Solutions. Multiple Criteria Decision Making in the New Millenium, Berlin, 425-432.
  • [5] Hooper, R.S.; Galvin, T.P.; Kimler, R.A. & Liebowitz, J. (1998). Use of an expert system in a personnel selection process. Expert Systems with Applications, 14(1), 425-432.
  • [6] Bohanec, M.; Urh, B. & Rajkovic, V. (1992). Evaluating options by combined qualitative and quantitative methods. Açta Psychologica, 80(2), 67-89.
  • [7] Güneş, M. (2001). Bulanık Doğsal Sistemler ve Regresyon Modellerine Uygulaması, A Review of Social, Economic & Business Studies, 1(1), 176-192.
  • [8] Triantaphyllou, E. (2000). Multi-Criteria Decision Making Methods: A Comparative Study. Dordrecht: Kluver Academic Publishers.
  • [9] Lootsma, F. (1997). Fuzzy Logic for Planning and Decision Making. Dordrecht: Kluver Academic Publishers.
  • [10] Terano, T.; Asai, K. & Sugeno, M. (1997). Fuzzy Systems Theory and Its Applications. San Diego: Academic Press Inc.
  • [11] Saaty, T.L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill.
  • [12] Gardiner, A.R. & Armstrong-Wright, D. (2000). Employee selection and anti-discrimination law: Implications for multi-criteria group decision support. Journal of Multi- Criteria Decision Analysis, 9(1), 99-109.
  • [13] Karsak, E.E. & Tolga, E. (2001). Fuzzy multi-criteria decision-making procedure for evaluating advanced manufacturing system investments. International Journal of Production Economics, 69(2) ,49-64.
  • [14] Van Laarhoven, P.J.M. & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(4) , 229-241.
  • [15] Buckley, J.J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(5), 233-247.
  • [16] Chang, D.Y. (1996). Applications of te extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(2), 649-655.
  • [17] Cheng, C.FI. (1997). Evaluating naval tactical misilse systems by fuzzy AHP based on the grade value of membership function. European Journal of Operational Research, 96(2), 343-350.
  • [18] Weck, M.; Klocke, F.; Schell, H. & Rüenauver, E. (1997). Evaluating altemative production cycles using the extended fuzzy AHP method. European Journal of Operational Research, 100(2), 351- 366.
  • [19] Kahraman, C.; Ulukan, Z. & Tolga, E. (1998). A fuzzy weighted evaluation method using objective and subjective measures. Proceedings of the International ICSC Symposium on Engineering of Intelligent Systems, 1, 57-63.
  • [20] Deng, H. (1999). Multicriteria analysis with fuzzy painvise comparison. International Journal of Approximate Reasoning, 21(3), 215-231.
  • [21] Lee, M.; Pham, H. & Zhang, X. (1999). A methodology for priority setting with application to sofhvare development process. European Journal of Operational Research, 118(2), 375-389, 1999.
  • [22] Chan, F.T.S.; Chan, M.H. & Tang, N.K.H. (2000). Evaluation methodologies for technology selection. Journal of Materials Processing Technology, 107(1-3), 330-337.
  • [23] Chan, F.T.S.; Jiang, B. & Tang, N.K.H. (2000). The development of intelligent decision support tools to aid the design of flexible manufacturing Systems. International Journal ofProduction Economics, 65(1), 73-84.
  • [24] Kuo, R.J.; Chi, S.C. & Kao, S.S. (2002). A decision support system for selecting convenience store location through integration of fuzzy AHP and artifıcial neural network. Computers in Industry, 47(2), 199-214.
  • [25] Mikhailov, L. & Singh, M.G. (2002). Fuzzy analytic network process and its application to the development of decision support Systems. IEEE Transactions on Systems, Man and Cybernetics-Part C: Applications and Reviews, 33(1), 33-41.
  • [26] Mikhailov, L. (2004). A fuzzy approach to deriving priorities ffom interval pairvvise comparison judgement. European Journal of Operational Research, 159(3), 687- 704.
  • [27] Mikhailov, L. & Tsvetinov, P. (2004). Evaluation of Services using a fuzzy analytic hierarchy process. Applied Soft Computing, 22(8), 42-69.
  • [28] Prakash, T.N. (2003). Land Suitability Analysis for Agricultural Crops: A Fuzzy Multicriteria Decision Making Approach. MSc Thesis, ITC Institue. 29
  • [29] Ding, J.F. & Liang, G.S. (2005). Using fuzzy MCDM to select partners of strategic alliances for liner shipping. Information Sciences, 173(28), 197- 225.
Year 2009, , 81 - 92, 10.01.2009
https://doi.org/10.14783/maruoneri.677337

Abstract

References

  • [1] Gargano, M.L.; Marose, R.A. & Kleeck, L. (1991). An application of artifıcial neural Networks and genetic algorithms to personnel selection in the fmancial industry. Proceedings of the First International Conference on Artifıcial Intelligence Applications, 257-262.
  • [2] Miller, G.M. & Feinzig, S.L. (1993). Fuzzy sets and personnel selection: Discussion and an application. Journal of Occupational and Organizational Psychology, 66(1), 163-169.
  • [3] Liang, S.L. & Wang M.J. (1994). Personnel selection using fuzzy MCDM algorithm. European Journal of Operational Research, 78(2), 22-33.
  • [4] Karsak, E.E. (2001). Personnel selection using a fuzzy MCDM approach based on ideal and anti-ideal Solutions. Multiple Criteria Decision Making in the New Millenium, Berlin, 425-432.
  • [5] Hooper, R.S.; Galvin, T.P.; Kimler, R.A. & Liebowitz, J. (1998). Use of an expert system in a personnel selection process. Expert Systems with Applications, 14(1), 425-432.
  • [6] Bohanec, M.; Urh, B. & Rajkovic, V. (1992). Evaluating options by combined qualitative and quantitative methods. Açta Psychologica, 80(2), 67-89.
  • [7] Güneş, M. (2001). Bulanık Doğsal Sistemler ve Regresyon Modellerine Uygulaması, A Review of Social, Economic & Business Studies, 1(1), 176-192.
  • [8] Triantaphyllou, E. (2000). Multi-Criteria Decision Making Methods: A Comparative Study. Dordrecht: Kluver Academic Publishers.
  • [9] Lootsma, F. (1997). Fuzzy Logic for Planning and Decision Making. Dordrecht: Kluver Academic Publishers.
  • [10] Terano, T.; Asai, K. & Sugeno, M. (1997). Fuzzy Systems Theory and Its Applications. San Diego: Academic Press Inc.
  • [11] Saaty, T.L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill.
  • [12] Gardiner, A.R. & Armstrong-Wright, D. (2000). Employee selection and anti-discrimination law: Implications for multi-criteria group decision support. Journal of Multi- Criteria Decision Analysis, 9(1), 99-109.
  • [13] Karsak, E.E. & Tolga, E. (2001). Fuzzy multi-criteria decision-making procedure for evaluating advanced manufacturing system investments. International Journal of Production Economics, 69(2) ,49-64.
  • [14] Van Laarhoven, P.J.M. & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(4) , 229-241.
  • [15] Buckley, J.J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(5), 233-247.
  • [16] Chang, D.Y. (1996). Applications of te extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(2), 649-655.
  • [17] Cheng, C.FI. (1997). Evaluating naval tactical misilse systems by fuzzy AHP based on the grade value of membership function. European Journal of Operational Research, 96(2), 343-350.
  • [18] Weck, M.; Klocke, F.; Schell, H. & Rüenauver, E. (1997). Evaluating altemative production cycles using the extended fuzzy AHP method. European Journal of Operational Research, 100(2), 351- 366.
  • [19] Kahraman, C.; Ulukan, Z. & Tolga, E. (1998). A fuzzy weighted evaluation method using objective and subjective measures. Proceedings of the International ICSC Symposium on Engineering of Intelligent Systems, 1, 57-63.
  • [20] Deng, H. (1999). Multicriteria analysis with fuzzy painvise comparison. International Journal of Approximate Reasoning, 21(3), 215-231.
  • [21] Lee, M.; Pham, H. & Zhang, X. (1999). A methodology for priority setting with application to sofhvare development process. European Journal of Operational Research, 118(2), 375-389, 1999.
  • [22] Chan, F.T.S.; Chan, M.H. & Tang, N.K.H. (2000). Evaluation methodologies for technology selection. Journal of Materials Processing Technology, 107(1-3), 330-337.
  • [23] Chan, F.T.S.; Jiang, B. & Tang, N.K.H. (2000). The development of intelligent decision support tools to aid the design of flexible manufacturing Systems. International Journal ofProduction Economics, 65(1), 73-84.
  • [24] Kuo, R.J.; Chi, S.C. & Kao, S.S. (2002). A decision support system for selecting convenience store location through integration of fuzzy AHP and artifıcial neural network. Computers in Industry, 47(2), 199-214.
  • [25] Mikhailov, L. & Singh, M.G. (2002). Fuzzy analytic network process and its application to the development of decision support Systems. IEEE Transactions on Systems, Man and Cybernetics-Part C: Applications and Reviews, 33(1), 33-41.
  • [26] Mikhailov, L. (2004). A fuzzy approach to deriving priorities ffom interval pairvvise comparison judgement. European Journal of Operational Research, 159(3), 687- 704.
  • [27] Mikhailov, L. & Tsvetinov, P. (2004). Evaluation of Services using a fuzzy analytic hierarchy process. Applied Soft Computing, 22(8), 42-69.
  • [28] Prakash, T.N. (2003). Land Suitability Analysis for Agricultural Crops: A Fuzzy Multicriteria Decision Making Approach. MSc Thesis, ITC Institue. 29
  • [29] Ding, J.F. & Liang, G.S. (2005). Using fuzzy MCDM to select partners of strategic alliances for liner shipping. Information Sciences, 173(28), 197- 225.
There are 29 citations in total.

Details

Primary Language Turkish
Journal Section Eski Sayılar
Authors

S. Erdal Dinçer This is me

Publication Date January 10, 2009
Published in Issue Year 2009

Cite

APA Dinçer, S. E. (2009). ÇOK AMAÇLI KARAR ALMA’DA BULANIK MANTIK VE BULANIK ANALİTİK HİYERARŞİ YÖNTEMİYLE BİR SİYASİ PARTİ İÇİN ADAY BELİRLEME ÇALIŞMASI. Öneri Dergisi, 8(31), 81-92. https://doi.org/10.14783/maruoneri.677337

15795

Bu web sitesi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Öneri Dergisi

Marmara Üniversitesi Sosyal Bilimler Enstitüsü

Göztepe Kampüsü Enstitüler Binası Kat:5 34722  Kadıköy/İstanbul

e-ISSN: 2147-5377