Research Article
BibTex RIS Cite

DİNAMİK SERVİSLİ KUYRUK SİSTEMİNİN SABİT SERVİSLİ KUYRUK SİSTEMİ İLE KARŞILAŞTIRILMASI VE İGDAŞ BAKIRKÖY VEZNELERİNE SİMÜLASYONU

Year 2005, Volume: 6 Issue: 24, 279 - 285, 10.06.2005
https://doi.org/10.14783/maruoneri.680994

Abstract

Bu çalışmada dinamik servisli bir kuyruk modeli oluşturulmaya çalışılmıştır. Böyle bir modeldeki temel amaç müşteri geliş ve değişim bilgilerine göre servis veya servislerin sisteme dahil edilmesi veya çıkartılması veya diğer bir ifadeyle periyodik yoğunluk ve boşluğun çözüme kavuşturulmasıdır. Dinamik servis modelleri tek kuyruklu ve çok servisli sistemler için geliştirilmiş bir yöntemdir. Dinamik servis modelleri algoritması gereken sayıdaki servis sayısını sisteme dahil etmeyi hedeflemektedir. Burada dikkat edilmesi gereken temel nokta bekleyen maksimum müşteri sayısının önsel tahminlerinin olmadığı durumlarda çalışmasıdır. Şayet gelen müşteri sayısında marjinal bir artış söz konusu olursa model sisteme sistemin izin verdiği miktarda servisi dahil etmeyi planlamaktadır. Aynı şekilde bunun aksi durumu da geçerli olmaktadır.

References

  • [1] Teghem, J.Jr. (1986). Control of the service process in a queuing system. European Journal of Operation Research, 23, 141-158.
  • [2] Eager, D.L.; Lazovvska, E.D. & Zahorjan, J. (1986). Adaptive load sharing in homogenous distributed systems. IEEE Trans. Soft. Engng, 12, 662-665.
  • [3] Lin, W. & Kumar, P. (1984). Optimal control of a queuing system with two heterogeneous servers. IEEE Trans Automat. Control, 29, 696-703.
  • [4] Agrawala, A.; Coffman, E.; Garey, M. & Tripathi, S. (1984). Stochastic optimization algorithm minimizing expected flow times on uniform processors. IEEE Trans. Comput., 33, 351-356.
  • [5] Booyens, M. & Kritzinger, P.S. (1984). A language to describe and evaluate queuing network models. Performance Evaluation, 4(3), 171-181.
  • [6] Chakravarthy, S. (1992). A finite capacity dynamic priority queuing model. Computer & Industrial Eııgineering, 22(4), 369-385.
  • [7] Nelson, R. & Towsley, D. (1987). Approximating the meantime in system in a multiple-server queue that uses threshold scheduling. Opirı. Res., 35, 419-427.
  • [8] Ittig, P.T. (1994). Planning service capacity when demand is sensitive to delay. Decision Sciences, 25, 541-559.
  • [9] Umesh, U.; Pettit, K. & Brozman, C. (1989). Shopping model of the time-sensitive consumer. Decision Science, 20,715-729.
  • [10] Szarkowicz, D.S. & Knowles, T.W. (1985). Optimal control of an M/M/S queuing system. Opin. Res., 33, 644- 660. 11
  • [11] Chakravarthy, S. & Dudin, A. (2003). Analysis of a retrial queuing model with MAP arrivals and two types of customers. Mathematical and Computer Modelling, 37(3- 4), 343-363
  • [12] Finkel, D. & Kiff, T. (1987). Simulation of dynamic load sharing in distributed Computer Systems. Model Simul., 18, 1681-1685.
  • [13] Levine, A. & Finkel, D. (1990). Load balancing in a multi-server queuing system. Comput. Opin.. Res., 17, 17-25.
  • [14] Poon , M.H.; Wong, S.C. & Tong, C.O. (2004). A dynamic schedule-based model for congested transit Netvvorks. Transportation Research Part B: Methodological, 38(4), 343-368.
  • [15] Larson, R. (1987). Perspectives on queues: Social justice and the psychology of queuing. Opin. Res., 35, 895-905.
  • [16] Crabill, T.B. & Gross, D. (1977). Magazine, M. J.. A classifîed bibliography of research on optimal design and control of queues. Opin. Res., 25, 219-232.
  • [17] Peam, W.L. & Chang, Y.C. (2004). Optimal management of the A-policy M/E/Jl queuing system with a removable service station: a sensitivity investigation. Computers <£ Operations Research, 31 (7), 1001-1015.
  • [18] Hansen., M. (2002). Micro-Level analysis of airport delay externalities using determinist queuing models a case study. Journal of Air Transport Management, 8(2), 73-87.
  • [19] Moreno, P. (2004. An M/GI\ retrial queue with recurrent customers and general retrial times. Applied Mathematics and Computation, 159(3), 651-666.
Year 2005, Volume: 6 Issue: 24, 279 - 285, 10.06.2005
https://doi.org/10.14783/maruoneri.680994

Abstract

References

  • [1] Teghem, J.Jr. (1986). Control of the service process in a queuing system. European Journal of Operation Research, 23, 141-158.
  • [2] Eager, D.L.; Lazovvska, E.D. & Zahorjan, J. (1986). Adaptive load sharing in homogenous distributed systems. IEEE Trans. Soft. Engng, 12, 662-665.
  • [3] Lin, W. & Kumar, P. (1984). Optimal control of a queuing system with two heterogeneous servers. IEEE Trans Automat. Control, 29, 696-703.
  • [4] Agrawala, A.; Coffman, E.; Garey, M. & Tripathi, S. (1984). Stochastic optimization algorithm minimizing expected flow times on uniform processors. IEEE Trans. Comput., 33, 351-356.
  • [5] Booyens, M. & Kritzinger, P.S. (1984). A language to describe and evaluate queuing network models. Performance Evaluation, 4(3), 171-181.
  • [6] Chakravarthy, S. (1992). A finite capacity dynamic priority queuing model. Computer & Industrial Eııgineering, 22(4), 369-385.
  • [7] Nelson, R. & Towsley, D. (1987). Approximating the meantime in system in a multiple-server queue that uses threshold scheduling. Opirı. Res., 35, 419-427.
  • [8] Ittig, P.T. (1994). Planning service capacity when demand is sensitive to delay. Decision Sciences, 25, 541-559.
  • [9] Umesh, U.; Pettit, K. & Brozman, C. (1989). Shopping model of the time-sensitive consumer. Decision Science, 20,715-729.
  • [10] Szarkowicz, D.S. & Knowles, T.W. (1985). Optimal control of an M/M/S queuing system. Opin. Res., 33, 644- 660. 11
  • [11] Chakravarthy, S. & Dudin, A. (2003). Analysis of a retrial queuing model with MAP arrivals and two types of customers. Mathematical and Computer Modelling, 37(3- 4), 343-363
  • [12] Finkel, D. & Kiff, T. (1987). Simulation of dynamic load sharing in distributed Computer Systems. Model Simul., 18, 1681-1685.
  • [13] Levine, A. & Finkel, D. (1990). Load balancing in a multi-server queuing system. Comput. Opin.. Res., 17, 17-25.
  • [14] Poon , M.H.; Wong, S.C. & Tong, C.O. (2004). A dynamic schedule-based model for congested transit Netvvorks. Transportation Research Part B: Methodological, 38(4), 343-368.
  • [15] Larson, R. (1987). Perspectives on queues: Social justice and the psychology of queuing. Opin. Res., 35, 895-905.
  • [16] Crabill, T.B. & Gross, D. (1977). Magazine, M. J.. A classifîed bibliography of research on optimal design and control of queues. Opin. Res., 25, 219-232.
  • [17] Peam, W.L. & Chang, Y.C. (2004). Optimal management of the A-policy M/E/Jl queuing system with a removable service station: a sensitivity investigation. Computers <£ Operations Research, 31 (7), 1001-1015.
  • [18] Hansen., M. (2002). Micro-Level analysis of airport delay externalities using determinist queuing models a case study. Journal of Air Transport Management, 8(2), 73-87.
  • [19] Moreno, P. (2004. An M/GI\ retrial queue with recurrent customers and general retrial times. Applied Mathematics and Computation, 159(3), 651-666.
There are 19 citations in total.

Details

Primary Language Turkish
Journal Section Eski Sayılar
Authors

S. Erdal Dinçer This is me

Publication Date June 10, 2005
Published in Issue Year 2005 Volume: 6 Issue: 24

Cite

APA Dinçer, S. E. (2005). DİNAMİK SERVİSLİ KUYRUK SİSTEMİNİN SABİT SERVİSLİ KUYRUK SİSTEMİ İLE KARŞILAŞTIRILMASI VE İGDAŞ BAKIRKÖY VEZNELERİNE SİMÜLASYONU. Öneri Dergisi, 6(24), 279-285. https://doi.org/10.14783/maruoneri.680994

15795

This web is licensed under a Creative Commons Attribution 4.0 International License.

Öneri

Marmara UniversityInstitute of Social Sciences

Göztepe Kampüsü Enstitüler Binası Kat:5 34722  Kadıköy/İstanbul

e-ISSN: 2147-5377