Research Article
BibTex RIS Cite

HİSSE SENEDİ FİYATLARININ MODELLENMESİ ve OPSİYONLARIN FİYATLANDIRILMASI: BİNOMİAL YAKLAŞIM

Year 2002, Volume: 5 Issue: 18, 21 - 28, 28.06.2002
https://doi.org/10.14783/maruoneri.683116

Abstract

In this study, we explain to the pricing hedging of derivatives infinite markets models. In this setting we work out of the key financial and mathematical ideas underlying modern derivatives. Asset analysis without having to deal with the technicalities stochastic calculus. We explain the notation of dynamic edging and introduce the concept of an equivalent martingale - measure. We discuss the fundamental theorem of asset pricing and derive the Risk- Neutral pricing principle. To illustrate these concepts we briefly discuss the Binomial model of Cox, Ross and Rubinstein (1979).

References

  • [1] HULL, J.C., Options, Futures and Other Derivatives, Printice Hall, 1997.
  • [2] COX, J.; ROSS, S.; RUBINSTEIN, M., "Option Pricing: A Simplified Approach", Journal of Financial Economics, 7, 1979, s.224-264.
  • [3] ELLIOTT, R.J.; KAPP, F.E., Mathematics of Financial Markets, Springer 1999.
  • [4] RESNICK, S., Adventures in Stochastic Processes, Birhouser, 1992.
  • [5] WILMOTT, P.; HOWISON, S.; DEWYNNE, J., The Mathematics of Financial Derivatives, Cambridge University Press, 1995.
  • [6] KALLIANPUR, G.; KARANDIKAR, R.L., Introduction to Option Pricing Theory, Birhauser, 2000.
  • [7] RUBINSTEIN, M., "Implied Binomial Trees", Journal of Finance, 49, 1994, s.771-818.
  • [8] BLACK, F.; SCHOLES, M., "Pricing of Options Corporate Liabilities", Journal of Political Economy, 81, 1973, s.637-654.
  • [9] LAMBERTON, D.; LAPEYRE , B., Introduction to Stochastic Calculus Applied to Finance, Chapman&Hall,1996.
  • [10] OKSENDAL, B., Stochastic Differential Equations:An Introduction with Applications, Springer, 1998.
  • [11] PLISKA, S.R., Introduction to Mathematical Finance. Discrete Time Models, Blackwell Publishers Ltd., 1998.
  • [12] WILLIAMS, D., Probability with Martingales, Cambridge University Press, 1991.
Year 2002, Volume: 5 Issue: 18, 21 - 28, 28.06.2002
https://doi.org/10.14783/maruoneri.683116

Abstract

References

  • [1] HULL, J.C., Options, Futures and Other Derivatives, Printice Hall, 1997.
  • [2] COX, J.; ROSS, S.; RUBINSTEIN, M., "Option Pricing: A Simplified Approach", Journal of Financial Economics, 7, 1979, s.224-264.
  • [3] ELLIOTT, R.J.; KAPP, F.E., Mathematics of Financial Markets, Springer 1999.
  • [4] RESNICK, S., Adventures in Stochastic Processes, Birhouser, 1992.
  • [5] WILMOTT, P.; HOWISON, S.; DEWYNNE, J., The Mathematics of Financial Derivatives, Cambridge University Press, 1995.
  • [6] KALLIANPUR, G.; KARANDIKAR, R.L., Introduction to Option Pricing Theory, Birhauser, 2000.
  • [7] RUBINSTEIN, M., "Implied Binomial Trees", Journal of Finance, 49, 1994, s.771-818.
  • [8] BLACK, F.; SCHOLES, M., "Pricing of Options Corporate Liabilities", Journal of Political Economy, 81, 1973, s.637-654.
  • [9] LAMBERTON, D.; LAPEYRE , B., Introduction to Stochastic Calculus Applied to Finance, Chapman&Hall,1996.
  • [10] OKSENDAL, B., Stochastic Differential Equations:An Introduction with Applications, Springer, 1998.
  • [11] PLISKA, S.R., Introduction to Mathematical Finance. Discrete Time Models, Blackwell Publishers Ltd., 1998.
  • [12] WILLIAMS, D., Probability with Martingales, Cambridge University Press, 1991.
There are 12 citations in total.

Details

Primary Language Turkish
Journal Section Eski Sayılar
Authors

Ömer Önalan This is me

Publication Date June 28, 2002
Published in Issue Year 2002 Volume: 5 Issue: 18

Cite

APA Önalan, Ö. (2002). HİSSE SENEDİ FİYATLARININ MODELLENMESİ ve OPSİYONLARIN FİYATLANDIRILMASI: BİNOMİAL YAKLAŞIM. Öneri Dergisi, 5(18), 21-28. https://doi.org/10.14783/maruoneri.683116

15795

This web is licensed under a Creative Commons Attribution 4.0 International License.

Öneri

Marmara UniversityInstitute of Social Sciences

Göztepe Kampüsü Enstitüler Binası Kat:5 34722  Kadıköy/İstanbul

e-ISSN: 2147-5377