Review
BibTex RIS Cite

Black Soldier Fly (Hermetia illucens) Larvae as an Ecological, Immune Booster and Economical Feedstuff for Aquaculture

Year 2022, , 52 - 62, 28.03.2022
https://doi.org/10.33714/masteb.1041493

Abstract

Black soldier fly larva can renovate biological trashes into valuable nutrients, for instance, proteins, lipids, and chitin, which decrease ecological encumbrance happening due to organic wastes accumulation. Even though rapid demand for proteinaceous food is predictable, insects got less attention in the animal feed business primarily due to technical and monetary hurdles. Moreover, many times research highlighted the consumer and producer preferences for insects’ meal potential in livestock feeding. This review is anticipated to elucidate the prominence of black soldier fly larvae meal as a substitute to conventional feedstuffs including soybean and fishmeal and soybean oil ensuring productive, cost proficient, environmentally friendly, least land necessitating, least pathogenic risk, immunity-boosting, purely organic and everlasting source of non-conventional protein feedstuff for aquatic habitats.

References

  • Abdel-Latif, H. M., Abdel-Tawwab, M., Khalil, R. H., Metwally, A. A., Shakweer, M. S., Ghetas, H. A., & Khallaf, M. A. (2021). Black soldier fly (Hermetia illucens) larvae meal in diets of European seabass: Effects on antioxidative capacity, non-specific immunity, transcriptomic responses, and resistance to the challenge with Vibrio alginolyticus. Fish and Shellfish Immunology, 111, 111-118. https://doi.org/10.1016/j.fsi.2021.01.013
  • Alvarez, D., Wilkinson, K. A., Treilhou, M., Castillo, D., & Sauvain, M. (2019). Prospecting peptides isolated from black soldier fly (Diptera: Stratiomyidae) with antimicrobial activity against Helicobacter pylori (Campylobacterales: Helicobacteraceae). Journal of Insect Science, 19, 17. https://doi.org/10.1093/jisesa/iez120
  • Bekker, N. S., Heidelbach, S., Vestergaard, S. Z., Nielsen, M. E., Riisgaard-Jensen, M., Zeuner, E. J., & Eriksen, N. T. (2021). Impact of substrate moisture content on growth and metabolic performance of black soldier fly larvae. Waste Management, 127, 73-79. https://doi.org/10.1016/j.wasman.2021.04.028
  • Bosch, G., Van Zanten, H., Zamprogna, A., Veenenbos, M., Meijer, N., Van der Fels-Klerx, H., & Van Loon, J. (2019). Conversion of organic resources by black soldier fly larvae: legislation, efficiency and environmental impact. Journal of Cleaner Production, 222, 355-363. https://doi.org/10.1016/j.jclepro.2019.02.270
  • Caligiani, A., Marseglia, A., Leni, G., Baldassarre, S., Maistrello, L., Dossena, A., & Sforza, S. (2018). Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food Research International, 105, 812-820. https://doi.org/10.1016/j.foodres.2017.12.012
  • Chaklader, M. R., Howieson, J., Fotedar, R., & Siddik, M. A. (2020). Supplementation of Hermetia illucens larvae in poultry by-product meal-based barramundi, lates calcarifer diets improves adipocyte cell size, skin barrier functions, and immune responses. Frontiers in Nutrition, 7, 320. https://doi.org/10.3389/fnut.2020.613158
  • Choi, W. H., & Jiang, M. (2014). Evaluation of antibacterial activity of hexanedioic acid isolated from Hermetia illucens larvae. Journal of Applied Biomedicine, 12, 179-189. https://doi.org/10.1016/j.jab.2014.01.003
  • Choi, W. H., Yun, J. H., Chu, J. P., & Chu, K. B. (2012). Antibacterial effect of extracts of Hermetia illucens larvae against Gram‐negative bacteria. Entomological Research, 42, 219-226. https://doi.org/10.1111/j.1748-5967.2012.00465.x
  • Cordero, R. J., & Casadevall, A. (2020). Melanin. Current Biology, 30, R142-R143. https://doi.org/10.1016/j.cub.2019.12.042
  • Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M., & Froehlich, H. E. (2020). Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nature Food, 1, 301-308. https://doi.org/10.1038/s43016-020-0078-x
  • Cummins Jr, V. C., Rawles, S. D., Thompson, K. R., Velasquez, A., Kobayashi, Y., Hager, J., & Webster, C. D. (2017). Evaluation of Hermetia illucens larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp. Aquaculture, 473, 337 344. https://doi.org/10.1016/j.aquaculture.2017.02.022
  • Devic, E., Leschen, W., Murray, F., & Little, D. C. (2018). Growth performance, feed utilization and body composition of advanced nursing Nile tilapia (Oreochromis niloticus) fed diets containing Black Soldier Fly (Hermetia illucens) larvae meal. Aquaculture Nutrition, 24, 416-423. https://doi.org/10.1111/anu.12573
  • Dumas, A., Raggi, T., Barkhouse, J., Lewis, E., & Weltzien, E. (2018). The oil fraction and partially defatted meal of Hermetia illucens affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout. Aquaculture, 492, 24-34. https://doi.org/10.1016/j.aquaculture.2018.03.038
  • Erickson, M. C., Islam, M., Sheppard, C., Liao, J., & Doyle, M. P. (2004). Reduction of Escherichia coli O157: H7 and Salmonella enterica Serovar Enteritidis in chicken manure by larvae of the black soldier fly. Journal of Food Protection, 67, 685-690. https://doi.org/10.4315/0362-028X-67.4.685
  • European Commission. (2010). Preparatory Study on Food Waste Across EU 27. Technical Report 2010-054. In October. https://www.eea.europa.eu/data-and-aps/
  • European Commission. (2017). Commission Regulation 2017/893 as regards to the provisions on processed animal proteins. Official Journal of the European Union. https://op.europa.eu/en/publication-detail/
  • European Parliament & Council. (2009). Regulation (EC) No 1069/2009, Animal by-products Regulation. Official Journal of the European Union. https://eur-lex.europa.eu/legal
  • European Parliament & the Council of the EU. (2002). Directive of The European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed 2002/32. Official Journal of the European Communities. https://www.fao.org/faolex/results/
  • European Parliament. (2013). Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed. In Official Journal of the European Communities. https://www.fao.org/faolex/
  • European Union (2009). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC & 2003/30/EC. Official Journal of the European Union 5, 2009. https://www.legislation.gov.uk/eudr/2009/28
  • European Union Waste Framework Directive. (2008). Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives (Text with EEA relevance). In Official Journal of the European Union. https://www.legislation.gov.uk/eudr/
  • FAO. (2016). The State of World Fisheries and Aquaculture: Contributing to food security and nutrition for all (pp. 200-204). Rome. https://www.fao.org/documents/
  • Fawole, F. J., Adeoye, A. A., Tiamiyu, L. O., Ajala, K. I., Obadura, S. O., & Ganiyu, I. O. (2020). Substituting fishmeal with Hermetia illucens in the diets of African catfish: Effects on growth, nutrient utilization, haemato-physiological response, and oxidative stress biomarker. Aquaculture, 518, 734849. https://doi.org/10.1016/j.aquaculture.2019.734849
  • Feng, W., Xiong, H., Wang, W., Duan, X., Yang, T., Wu, C., & Wang, C. (2019). Energy consumption analysis of lipid extraction from black soldier fly biomass. Energy, 185, 1076-1085. https://doi.org/10.1016/j.energy.2019.07.113
  • Gahukar, R. (2016). Edible insects farming: efficiency and impact on family livelihood, food security, and environment compared with livestock and crops, Insects as sustainable food ingredients (pp. 85-111). Elsevier. https://doi.org/10.1016/b978-0-12-802856-8.00004-1
  • Gephart, J. A., Golden, C. D., Asche, F., Belton, B., Brugere, C., Froehlich, H. E., Fry, J. P., Halpern, B. S., Hicks, C. C., & Jones, R. C. (2020). Scenarios for global aquaculture and its role in human nutrition. Reviews in Fisheries Science and Aquaculture, 29, 122-138. https://doi.org/10.1080/23308249.2020.1782342
  • Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO). Rome.
  • Gougbedji, A., Agbohessou, P., Lalèyè, P. A., Francis, F., & Megido, R. C. (2021). Technical basis for the small-scale production of black soldier fly, Hermetia illucens (L. 1758), meal as fish feed in Benin. Journal of Agriculture and Food Research, 4, 100153. https://doi.org/10.1016/j.jafr.2021.100153
  • Guerreiro, I., Castro, C., Antunes, B., Coutinho, F., Rangel, F., Couto, A., Serra, C. R., Peres, H., Pousão-Ferreira, P., & Matos, E. (2020). Catching black soldier fly for meagre: Growth, whole-body fatty acid profile and metabolic responses. Aquaculture, 516, 734613. https://doi.org/10.1016/j.aquaculture.2019.734613
  • Guo, H., Jiang, C., Zhang, Z., Lu, W., & Wang, H. (2021). Material flow analysis and life cycle assessment of food waste bioconversion by black soldier fly larvae. Science of The Total Environment, 750, 141656. https://doi.org/10.1016/j.scitotenv.2020.141656
  • Harlystiarini, H., Mutia, R., Wibawan, I. W. T., & Astuti, D. A. (2019). In vitro antibacterial activity of black soldier fly (Hermetia illucens) larva extracts against gram-negative bacteria. Buletin Peternakan, 43(2), 125-129. https://doi.org/10.21059/buletinpeternak.v43i2.42833
  • Huyben, D., Vidaković, A., Hallgren, S. W., & Langeland, M (2019). High-throughput sequencing of gut microbiota in rainbow trout fed larval and pre-pupae stages of black soldier fly. Aquaculture, 500, 485-491. https://doi.org/10.1016/j.aquaculture.2018.10.034
  • Islam, M. M., & Yang, C. J. (2017). Efficacy of mealworm and super mealworm larvae probiotics as an alternative to antibiotics challenged orally with Salmonella and E. coli infection in broiler chicks. Poultry Science, 96, 27-34. https://doi.org/10.3382/ps/pew220
  • Kim, S. W., Jung, T. S., Ha, Y. J., Gal, S. W., Noh, C. W., Kim, I. S., & Yoo, J. H. (2019). Removal of fat from crushed black soldier fly larvae by carbon dioxide supercritical extraction. Journal of Animal Feed Sciences, 28(1), 83-88. http://doi.org/10.22358/jafs/105132/2019
  • Lahteenmaki-Uutela, A., Grmelová, N., Hénault-Ethier, L., Deschamps, M. -H., Vandenberg, G. W., Zhao, A., Zhang, Y., Yang, B., & Nemane, V. (2017). Insects as food and feed: laws of the European Union, United States, Canada, Mexico, Australia, and China. European Food and Feed Law Review, 12(1), 22-36.
  • Lalander, C., Senecal, J., Calvo, M. G., Ahrens, L., Josefsson, S., Wiberg, K., & Vinnerås, B. (2016). Fate of pharmaceuticals and pesticides in fly larvae composting. Science of The Total Environment, 565, 279-286. https://doi.org/10.1016/j.scitotenv.2016.04.147
  • Llagostera, P. F., Kallas, Z., Reig, L., & de Gea, D. A. (2019). The use of insect meal as a sustainable feeding alternative in aquaculture: Current situation, Spanish consumers’ perceptions and willingness to pay. Journal of Cleaner Production, 229, 10-21. https://doi.org/10.1016/j.jclepro.2019.05.012
  • Lu, R., Chen, Y., Yu, W., Lin, M., Yang, G., Qin, C., Meng, X., Zhang, Y., Ji, H., & Nie, G. (2020). Defatted black soldier fly (Hermetia illucens) larvae meal can replace soybean meal in juvenile grass carp (Ctenopharyngodon idellus) diets. Aquaculture Reports, 18, 100520. https://doi.org/10.1016/j.aqrep.2020.100520
  • Magalhães, R., Sánchez-López, A., Leal, R. S., Martínez-Llorens, S., Oliva-Teles, A., & Peres, H. (2017). Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture, 476, 79-85. https://doi.org/10.1016/j.aquaculture.2017.04.021
  • Matthäus, B., Piofczyk, T., Katz, H., & Pudel, F. (2019). Renewable resources from insects: exploitation, properties, and refining of fat obtained by cold‐pressing from Hermetia illucens (Black Soldier Fly) larvae. European Journal of Lipid Science and Technology, 121(7), 1800376. http://doi.org/10.1002/ejlt.201800376
  • Menconi, A., Pumford, N. R., Morgan, M. J., Bielke, L. R., Kallapura, G., Latorre, J. D., Wolfenden, A. D., Hernandez-Velasco, X., Hargis, B. M., & Tellez, G. (2014). Effect of chitosan on Salmonella Typhimurium in broiler chickens. Foodborne Pathogens and Disease, 11(2), 165-169. https://doi.org/10.1089/fpd.2013.1628
  • Mo, W. Y., Man, Y. B., & Wong, M. H. (2018). Use of food waste, fish waste and food processing waste for China’s aquaculture industry: Needs and challenge. Science of The Total Environment, 613, 635-643. https://doi.org/10.1016/j.scitotenv.2017.08.321
  • Muin, H., Taufek, N., Kamarudin, M., & Razak, S. (2017). Growth performance, feed utilization and body composition of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) fed with different levels of black soldier fly, Hermetia illucens (Linnaeus, 1758) maggot meal diet. Iranian Journal of Fisheries Sciences, 16, 567-577. https://doi.org/10.1111/anu.12573
  • Nordentoft, S., Fischer, C., Bjerrum, L., Heckmann, L., & Hald, B. (2017). Reduction of Escherichia coli, Salmonella Enteritidis and Campylobacter jejuni in poultry manure by rearing of Musca domestica fly larvae. Journal of Insects as Food and Feed, 3, 145-153. https://doi.org/10.3920/JIFF2016.0058
  • Obiero, K., Meulenbroek, P., Drexler, S., Dagne, A., Akoll, P., Odong, R., Kaunda-Arara, B., & Waidbacher, H. (2019). The contribution of fish to food and nutrition security in Eastern Africa: Emerging trends and future outlooks. Sustainability, 11, 1636. https://doi.org/10.3390/su11061636
  • Oteri, M., Di Rosa, A. R., Lo Presti, V., Giarratana, F., Toscano, G., & Chiofalo, B. (2021). Black soldier fly larvae meal as alternative to fish meal for aquaculture feed. Sustainability, 13, 5447. https://doi.org/10.3390/su13105447
  • Park, S. I., & Yoe, S. M. (2017). A novel cecropin‐like peptide from black soldier fly, Hermetia illucens: Isolation, structural and functional characterization. Entomological Research, 47, 115-124. https://doi.org/10.1111/1748-5967.12226
  • Park, S. I., Chang, B. S., & Yoe, S. M. (2014). Detection of antimicrobial substances from larvae of the black soldier fly, H ermetia illucens (Diptera Stratiomyidae). Entomological Research, 44, 58-64. https://doi.org/10.1111/1748-5967.12050
  • Park, S. I., Kim, J. W., & Yoe, S. M. (2015). Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. Developmental & Comparative Immunology, 52, 98-106. https://doi.org/10.1016/j.dci.2015.04.018
  • Pauly, D., & Zeller, D. (2017). Comments on FAOs state of world fisheries and aquaculture (SOFIA 2016). Marine Policy, 77, 176-181. https://doi.org/10.1016/j.marpol.2017.01.006
  • Perednia, D. A., Anderson, J., & Rice, A. (2017). A comparison of the greenhouse gas production of black soldier fly larvae versus aerobic microbial decomposition of an organic feed material. Research and Reviews: Journal of Ecology and Environmental Sciences, 5, 10-16. https://doi.org/10.1016/j.jclepro.2020.122488.
  • Provost, B., Jouan, V., Hilliou, F., Delobel, P., Bernardo, P., Ravallec, M., Cousserans, F., Wajnberg, E., Darboux, I., Fournier, P., Strand, M. R., & Volkoff, A. -N. (2011). Lepidopteran transcriptome analysis following infection by phylogenetically unrelated polydnaviruses highlights differential and common responses. Insect Biochemistry and Molecular Biology, 41(8), 582-591. http://doi.org/10.1016/j.ibmb.2011.03.010
  • Rahmi, F. A., Yamin, M., & Sasaerila, Y. (2020). Effect of different organic wastes on the growth of black soldier fly (Hermetia illucens) larvae. Proceedings of the International Conference and the 10th Congress of the Entomological Society of Indonesia (ICCESI 2019), Indonesia, pp. 113-116. https://doi.org/10.2991/absr.k.200513.019
  • Raksasat, R., Lim, J. W., Kiatkittipong, W., Kiatkittipong, K., Ho, Y. C., Lam, M. K., Font-Palma, C., Zaid, H. F. M., & Cheng, C. K. (2020). A review of organic waste enrichment for inducing palatability of black soldier fly larvae: Wastes to valuable resources. Environmental Pollution, 267, 115488. https://doi.org/10.1016/j.envpol.2020.115488
  • Ravi, H. K., Guidou, C., Costil, J., Trespeuch, C., Chemat, F., & Vian, M. A. (2021). Novel insights on the sustainable wet mode fractionation of black soldier fly larvae (Hermetia illucens) into lipids, proteins and chitin. Processes, 9(11), 1888. https://doi.org/10.3390/pr9111888
  • Ravi, H. K., Vian, M. A., Tao, Y., Degrou, A., Costil, J., Trespeuch, C., & Chemat, F. (2019). Alternative solvents for lipid extraction and their effect on protein quality in black soldier fly (Hermetia illucens) larvae. Journal of Cleaner Production, 238, 117861. https://doi.org/10.1016.j.jclepro.2019.117861
  • Renna, M., Schiavone, A., Gai, F., Dabbou, S., Lussiana, C., Malfatto, V., Prearo, M., Capucchio, M.T., Biasato, I., & Biasibetti, E. (2017). Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. Journal of Animal Science and Biotechnology, 8, 1-13. https://doi.org/10.1186/s40104-017-0191-3
  • Sakadevan, K., & Nguyen, M. L. (2017). Livestock production and its impact on nutrient pollution and greenhouse gas emissions. Advances in Agronomy, 141, 147-184. https://doi.org/10.1016/bs.agron.2016.10.002
  • Salomone, R., Saija, G., Mondello, G., Giannetto, A., Fasulo, S., & Savastano, D. (2017). Environmental impact of food waste bioconversion by insects: application of life cycle assessment to process using Hermetia illucens. Journal of Cleaner Production, 140, 890-905. https://doi.org/10.1016/j.jclepro.2016.06.154
  • Secci, G., Mancini, S., Iaconisi, V., Gasco, L., Basto, A., & Parisi, G. (2019). Can the inclusion of black soldier fly in diet affect the flesh quality/nutritional traits of rainbow trout (Oncorhynchus mykiss) after freezing and cooking? International Journal of Food Sciences and Nutrition, 70, 161-171. https://doi.org/10.1080/09637486.2018.1489529
  • Shin, H. S., & Park, S. I. (2019). Novel attacin from Hermetia illucens: cDNA cloning, characterization, and antibacterial properties. Preparative Biochemistry and Biotechnology, 49, 279-285. https://doi.org/10.1080/10826068.2018.1541807
  • Soetemans, L., Uyttebroek, M., D’Hondt, E., & Bastiaens, L. (2019). Use of organic acids to improve fractionation of the black soldier fly larvae juice into lipid-and protein-enriched fractions. European Food Research and Technology, 245(10), 2257-2267. https://doi.org/10.1007/s00217-019-03328-7
  • Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, W., Vermeulen, S. J., Herrero, M., & Carlson, K. M. (2018). Options for keeping the food system within environmental limits. Nature, 562, 519-525. https://doi.org/10.1038/s41586-018-0594-0
  • Stadtlander, T., Stamer, A., Buser, A., Wohlfahrt, J., Leiber, F., & Sandrock, C. (2017). Hermetia illucens meal as fish meal replacement for rainbow trout on farm. Journal of Insects as Food and Feed, 3, 165-175. https://doi.org/10.3920/JIFF2016.0056
  • Su, C. H., Nguyen, H. C., Bui, T. L., & Huang, D. L. (2019). Enzyme-assisted extraction of insect fat for biodiesel production. Journal of Cleaner Production, 223, 436-444. https://doi.org/10.1016/j.jclepro.2019.03.150
  • Teigiserova, D. A., Hamelin, L., & Thomsen, M. (2020). Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Science of The Total Environment, 706, 136033. https://doi.org/10.1016/j.scitotenv.2019.136033
  • Tippayadara, N., Dawood, M. A., Krutmuang, P., Hoseinifar, S. H., Doan, H. V., & Paolucci, M. (2021). Replacement of fish meal by black soldier fly (Hermetia illucens) larvae meal: effects on growth, haematology, and skin mucus immunity of Nile tilapia, Oreochromis niloticus. Animals, 11, 193. https://doi.org/10.3390/ani11010193
  • Ushakova, N., Dontsov, A., Sаkina, N., Brodsky, E., Ratnikova, I., Gavrilova, N., Bаstrakov, A., Kozlova, A., & Nekrasov, R. (2017). Melanin properties at the different stages towards life cycle of the fly Hermetia illucens. Ukrainian Journal of Ecology, 7(4), 424-431. https://doi.org/10.15421/2017_137
  • Verstraete, F. (2013). Risk management of undesirable substances in feed following updated risk assessments. Toxicology and Applied Pharmacology, 270, 230-247. https://doi.org/10.1016/j.taap.2010.09.015
  • Vongvichith, B., Morioka, S., Sugita, T., Phousavanh, N., Phetsanghanh, N., Chanthasone, P., Pommachan, P., & Nakamura, S. (2020). Evaluation of the efficacy of aquaculture feeds for the climbing perch Anabas testudineus: Replacement of fishmeal by black soldier fly Hermetia illucens prepupae. Fisheries Science, 86, 145-151. https://doi.org/10.1007/s12562-019-01381-5
  • Wang, G., Peng, K., Hu, J., Yi, C., Chen, X., Wu, H., & Huang, Y. (2019). Evaluation of defatted black soldier fly (Hermetia illucens L.) larvae meal as an alternative protein ingredient for juvenile Japanese seabass (Lateolabrax japonicus) diets. Aquaculture, 507, 144-154. https://doi.org/10.1016/j.aquaculture.2019.04.023
  • Wiseman, S. A., Dötsch-Klerk, M., Neufingerl, N., & de Oliveira Martins, F. (2019). Future food: Sustainable diets for healthy people and a healthy planet. International Journal of Nutrology, 12, 023-028. https://doi.org/10.1055/s-0039-1695714
  • Xiao, X., Jin, P., Zheng, L., Cai, M., Yu, Z., Yu, J., & Zhang, J. (2018). Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco). Aquaculture Research, 49, 1569-1577. https://doi.org/10.1111/are.13611
  • Xu, J., Luo, X., Fang, G., Zhan, S., Wu, J., Wang, D., & Huang, Y. (2020). Transgenic expression of antimicrobial peptides from black soldier fly enhance resistance against entomopathogenic bacteria in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 127, 103487. https://doi.org/10.1016/j.ibmb.2020.103487
  • Zarantoniello, M., Bruni, L., Randazzo, B., Vargas, A., Gioacchini, G., Truzzi, C., Annibaldi, A., Riolo, P., Parisi, G., & Cardinaletti, G. (2018). Partial dietary inclusion of black soldier fly full-fat prepupae in zebrafish feed: biometric, histological, biochemical, and molecular implications. Zebrafish, 15, 519-532. https://doi.org/10.3390/ani11030720
  • Zarantoniello, M., Zimbelli, A., Randazzo, B., Compagni, M. D., Truzzi, Osimani, A., & Milanović, V. (2020). Black soldier fly reared on roasted coffee by-product and Schizochytrium sp. as a sustainable terrestrial ingredient for aquafeeds production. Aquaculture, 518, 734659. https://doi.org/10.1016/j.aquaculture.2019.734659
  • Zhou, J., Liu, S., Ji, H., & Yu, H. (2018). Effect of replacing dietary fish meal with black soldier fly larvae meal on growth and fatty acid composition of Jian carp (Cyprinus carpio var. Jian). Aquaculture Nutrition, 24, 424-433. https://doi.org/10.1111/anu.12574
Year 2022, , 52 - 62, 28.03.2022
https://doi.org/10.33714/masteb.1041493

Abstract

References

  • Abdel-Latif, H. M., Abdel-Tawwab, M., Khalil, R. H., Metwally, A. A., Shakweer, M. S., Ghetas, H. A., & Khallaf, M. A. (2021). Black soldier fly (Hermetia illucens) larvae meal in diets of European seabass: Effects on antioxidative capacity, non-specific immunity, transcriptomic responses, and resistance to the challenge with Vibrio alginolyticus. Fish and Shellfish Immunology, 111, 111-118. https://doi.org/10.1016/j.fsi.2021.01.013
  • Alvarez, D., Wilkinson, K. A., Treilhou, M., Castillo, D., & Sauvain, M. (2019). Prospecting peptides isolated from black soldier fly (Diptera: Stratiomyidae) with antimicrobial activity against Helicobacter pylori (Campylobacterales: Helicobacteraceae). Journal of Insect Science, 19, 17. https://doi.org/10.1093/jisesa/iez120
  • Bekker, N. S., Heidelbach, S., Vestergaard, S. Z., Nielsen, M. E., Riisgaard-Jensen, M., Zeuner, E. J., & Eriksen, N. T. (2021). Impact of substrate moisture content on growth and metabolic performance of black soldier fly larvae. Waste Management, 127, 73-79. https://doi.org/10.1016/j.wasman.2021.04.028
  • Bosch, G., Van Zanten, H., Zamprogna, A., Veenenbos, M., Meijer, N., Van der Fels-Klerx, H., & Van Loon, J. (2019). Conversion of organic resources by black soldier fly larvae: legislation, efficiency and environmental impact. Journal of Cleaner Production, 222, 355-363. https://doi.org/10.1016/j.jclepro.2019.02.270
  • Caligiani, A., Marseglia, A., Leni, G., Baldassarre, S., Maistrello, L., Dossena, A., & Sforza, S. (2018). Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food Research International, 105, 812-820. https://doi.org/10.1016/j.foodres.2017.12.012
  • Chaklader, M. R., Howieson, J., Fotedar, R., & Siddik, M. A. (2020). Supplementation of Hermetia illucens larvae in poultry by-product meal-based barramundi, lates calcarifer diets improves adipocyte cell size, skin barrier functions, and immune responses. Frontiers in Nutrition, 7, 320. https://doi.org/10.3389/fnut.2020.613158
  • Choi, W. H., & Jiang, M. (2014). Evaluation of antibacterial activity of hexanedioic acid isolated from Hermetia illucens larvae. Journal of Applied Biomedicine, 12, 179-189. https://doi.org/10.1016/j.jab.2014.01.003
  • Choi, W. H., Yun, J. H., Chu, J. P., & Chu, K. B. (2012). Antibacterial effect of extracts of Hermetia illucens larvae against Gram‐negative bacteria. Entomological Research, 42, 219-226. https://doi.org/10.1111/j.1748-5967.2012.00465.x
  • Cordero, R. J., & Casadevall, A. (2020). Melanin. Current Biology, 30, R142-R143. https://doi.org/10.1016/j.cub.2019.12.042
  • Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M., & Froehlich, H. E. (2020). Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nature Food, 1, 301-308. https://doi.org/10.1038/s43016-020-0078-x
  • Cummins Jr, V. C., Rawles, S. D., Thompson, K. R., Velasquez, A., Kobayashi, Y., Hager, J., & Webster, C. D. (2017). Evaluation of Hermetia illucens larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp. Aquaculture, 473, 337 344. https://doi.org/10.1016/j.aquaculture.2017.02.022
  • Devic, E., Leschen, W., Murray, F., & Little, D. C. (2018). Growth performance, feed utilization and body composition of advanced nursing Nile tilapia (Oreochromis niloticus) fed diets containing Black Soldier Fly (Hermetia illucens) larvae meal. Aquaculture Nutrition, 24, 416-423. https://doi.org/10.1111/anu.12573
  • Dumas, A., Raggi, T., Barkhouse, J., Lewis, E., & Weltzien, E. (2018). The oil fraction and partially defatted meal of Hermetia illucens affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout. Aquaculture, 492, 24-34. https://doi.org/10.1016/j.aquaculture.2018.03.038
  • Erickson, M. C., Islam, M., Sheppard, C., Liao, J., & Doyle, M. P. (2004). Reduction of Escherichia coli O157: H7 and Salmonella enterica Serovar Enteritidis in chicken manure by larvae of the black soldier fly. Journal of Food Protection, 67, 685-690. https://doi.org/10.4315/0362-028X-67.4.685
  • European Commission. (2010). Preparatory Study on Food Waste Across EU 27. Technical Report 2010-054. In October. https://www.eea.europa.eu/data-and-aps/
  • European Commission. (2017). Commission Regulation 2017/893 as regards to the provisions on processed animal proteins. Official Journal of the European Union. https://op.europa.eu/en/publication-detail/
  • European Parliament & Council. (2009). Regulation (EC) No 1069/2009, Animal by-products Regulation. Official Journal of the European Union. https://eur-lex.europa.eu/legal
  • European Parliament & the Council of the EU. (2002). Directive of The European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed 2002/32. Official Journal of the European Communities. https://www.fao.org/faolex/results/
  • European Parliament. (2013). Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed. In Official Journal of the European Communities. https://www.fao.org/faolex/
  • European Union (2009). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC & 2003/30/EC. Official Journal of the European Union 5, 2009. https://www.legislation.gov.uk/eudr/2009/28
  • European Union Waste Framework Directive. (2008). Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives (Text with EEA relevance). In Official Journal of the European Union. https://www.legislation.gov.uk/eudr/
  • FAO. (2016). The State of World Fisheries and Aquaculture: Contributing to food security and nutrition for all (pp. 200-204). Rome. https://www.fao.org/documents/
  • Fawole, F. J., Adeoye, A. A., Tiamiyu, L. O., Ajala, K. I., Obadura, S. O., & Ganiyu, I. O. (2020). Substituting fishmeal with Hermetia illucens in the diets of African catfish: Effects on growth, nutrient utilization, haemato-physiological response, and oxidative stress biomarker. Aquaculture, 518, 734849. https://doi.org/10.1016/j.aquaculture.2019.734849
  • Feng, W., Xiong, H., Wang, W., Duan, X., Yang, T., Wu, C., & Wang, C. (2019). Energy consumption analysis of lipid extraction from black soldier fly biomass. Energy, 185, 1076-1085. https://doi.org/10.1016/j.energy.2019.07.113
  • Gahukar, R. (2016). Edible insects farming: efficiency and impact on family livelihood, food security, and environment compared with livestock and crops, Insects as sustainable food ingredients (pp. 85-111). Elsevier. https://doi.org/10.1016/b978-0-12-802856-8.00004-1
  • Gephart, J. A., Golden, C. D., Asche, F., Belton, B., Brugere, C., Froehlich, H. E., Fry, J. P., Halpern, B. S., Hicks, C. C., & Jones, R. C. (2020). Scenarios for global aquaculture and its role in human nutrition. Reviews in Fisheries Science and Aquaculture, 29, 122-138. https://doi.org/10.1080/23308249.2020.1782342
  • Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO). Rome.
  • Gougbedji, A., Agbohessou, P., Lalèyè, P. A., Francis, F., & Megido, R. C. (2021). Technical basis for the small-scale production of black soldier fly, Hermetia illucens (L. 1758), meal as fish feed in Benin. Journal of Agriculture and Food Research, 4, 100153. https://doi.org/10.1016/j.jafr.2021.100153
  • Guerreiro, I., Castro, C., Antunes, B., Coutinho, F., Rangel, F., Couto, A., Serra, C. R., Peres, H., Pousão-Ferreira, P., & Matos, E. (2020). Catching black soldier fly for meagre: Growth, whole-body fatty acid profile and metabolic responses. Aquaculture, 516, 734613. https://doi.org/10.1016/j.aquaculture.2019.734613
  • Guo, H., Jiang, C., Zhang, Z., Lu, W., & Wang, H. (2021). Material flow analysis and life cycle assessment of food waste bioconversion by black soldier fly larvae. Science of The Total Environment, 750, 141656. https://doi.org/10.1016/j.scitotenv.2020.141656
  • Harlystiarini, H., Mutia, R., Wibawan, I. W. T., & Astuti, D. A. (2019). In vitro antibacterial activity of black soldier fly (Hermetia illucens) larva extracts against gram-negative bacteria. Buletin Peternakan, 43(2), 125-129. https://doi.org/10.21059/buletinpeternak.v43i2.42833
  • Huyben, D., Vidaković, A., Hallgren, S. W., & Langeland, M (2019). High-throughput sequencing of gut microbiota in rainbow trout fed larval and pre-pupae stages of black soldier fly. Aquaculture, 500, 485-491. https://doi.org/10.1016/j.aquaculture.2018.10.034
  • Islam, M. M., & Yang, C. J. (2017). Efficacy of mealworm and super mealworm larvae probiotics as an alternative to antibiotics challenged orally with Salmonella and E. coli infection in broiler chicks. Poultry Science, 96, 27-34. https://doi.org/10.3382/ps/pew220
  • Kim, S. W., Jung, T. S., Ha, Y. J., Gal, S. W., Noh, C. W., Kim, I. S., & Yoo, J. H. (2019). Removal of fat from crushed black soldier fly larvae by carbon dioxide supercritical extraction. Journal of Animal Feed Sciences, 28(1), 83-88. http://doi.org/10.22358/jafs/105132/2019
  • Lahteenmaki-Uutela, A., Grmelová, N., Hénault-Ethier, L., Deschamps, M. -H., Vandenberg, G. W., Zhao, A., Zhang, Y., Yang, B., & Nemane, V. (2017). Insects as food and feed: laws of the European Union, United States, Canada, Mexico, Australia, and China. European Food and Feed Law Review, 12(1), 22-36.
  • Lalander, C., Senecal, J., Calvo, M. G., Ahrens, L., Josefsson, S., Wiberg, K., & Vinnerås, B. (2016). Fate of pharmaceuticals and pesticides in fly larvae composting. Science of The Total Environment, 565, 279-286. https://doi.org/10.1016/j.scitotenv.2016.04.147
  • Llagostera, P. F., Kallas, Z., Reig, L., & de Gea, D. A. (2019). The use of insect meal as a sustainable feeding alternative in aquaculture: Current situation, Spanish consumers’ perceptions and willingness to pay. Journal of Cleaner Production, 229, 10-21. https://doi.org/10.1016/j.jclepro.2019.05.012
  • Lu, R., Chen, Y., Yu, W., Lin, M., Yang, G., Qin, C., Meng, X., Zhang, Y., Ji, H., & Nie, G. (2020). Defatted black soldier fly (Hermetia illucens) larvae meal can replace soybean meal in juvenile grass carp (Ctenopharyngodon idellus) diets. Aquaculture Reports, 18, 100520. https://doi.org/10.1016/j.aqrep.2020.100520
  • Magalhães, R., Sánchez-López, A., Leal, R. S., Martínez-Llorens, S., Oliva-Teles, A., & Peres, H. (2017). Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture, 476, 79-85. https://doi.org/10.1016/j.aquaculture.2017.04.021
  • Matthäus, B., Piofczyk, T., Katz, H., & Pudel, F. (2019). Renewable resources from insects: exploitation, properties, and refining of fat obtained by cold‐pressing from Hermetia illucens (Black Soldier Fly) larvae. European Journal of Lipid Science and Technology, 121(7), 1800376. http://doi.org/10.1002/ejlt.201800376
  • Menconi, A., Pumford, N. R., Morgan, M. J., Bielke, L. R., Kallapura, G., Latorre, J. D., Wolfenden, A. D., Hernandez-Velasco, X., Hargis, B. M., & Tellez, G. (2014). Effect of chitosan on Salmonella Typhimurium in broiler chickens. Foodborne Pathogens and Disease, 11(2), 165-169. https://doi.org/10.1089/fpd.2013.1628
  • Mo, W. Y., Man, Y. B., & Wong, M. H. (2018). Use of food waste, fish waste and food processing waste for China’s aquaculture industry: Needs and challenge. Science of The Total Environment, 613, 635-643. https://doi.org/10.1016/j.scitotenv.2017.08.321
  • Muin, H., Taufek, N., Kamarudin, M., & Razak, S. (2017). Growth performance, feed utilization and body composition of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) fed with different levels of black soldier fly, Hermetia illucens (Linnaeus, 1758) maggot meal diet. Iranian Journal of Fisheries Sciences, 16, 567-577. https://doi.org/10.1111/anu.12573
  • Nordentoft, S., Fischer, C., Bjerrum, L., Heckmann, L., & Hald, B. (2017). Reduction of Escherichia coli, Salmonella Enteritidis and Campylobacter jejuni in poultry manure by rearing of Musca domestica fly larvae. Journal of Insects as Food and Feed, 3, 145-153. https://doi.org/10.3920/JIFF2016.0058
  • Obiero, K., Meulenbroek, P., Drexler, S., Dagne, A., Akoll, P., Odong, R., Kaunda-Arara, B., & Waidbacher, H. (2019). The contribution of fish to food and nutrition security in Eastern Africa: Emerging trends and future outlooks. Sustainability, 11, 1636. https://doi.org/10.3390/su11061636
  • Oteri, M., Di Rosa, A. R., Lo Presti, V., Giarratana, F., Toscano, G., & Chiofalo, B. (2021). Black soldier fly larvae meal as alternative to fish meal for aquaculture feed. Sustainability, 13, 5447. https://doi.org/10.3390/su13105447
  • Park, S. I., & Yoe, S. M. (2017). A novel cecropin‐like peptide from black soldier fly, Hermetia illucens: Isolation, structural and functional characterization. Entomological Research, 47, 115-124. https://doi.org/10.1111/1748-5967.12226
  • Park, S. I., Chang, B. S., & Yoe, S. M. (2014). Detection of antimicrobial substances from larvae of the black soldier fly, H ermetia illucens (Diptera Stratiomyidae). Entomological Research, 44, 58-64. https://doi.org/10.1111/1748-5967.12050
  • Park, S. I., Kim, J. W., & Yoe, S. M. (2015). Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. Developmental & Comparative Immunology, 52, 98-106. https://doi.org/10.1016/j.dci.2015.04.018
  • Pauly, D., & Zeller, D. (2017). Comments on FAOs state of world fisheries and aquaculture (SOFIA 2016). Marine Policy, 77, 176-181. https://doi.org/10.1016/j.marpol.2017.01.006
  • Perednia, D. A., Anderson, J., & Rice, A. (2017). A comparison of the greenhouse gas production of black soldier fly larvae versus aerobic microbial decomposition of an organic feed material. Research and Reviews: Journal of Ecology and Environmental Sciences, 5, 10-16. https://doi.org/10.1016/j.jclepro.2020.122488.
  • Provost, B., Jouan, V., Hilliou, F., Delobel, P., Bernardo, P., Ravallec, M., Cousserans, F., Wajnberg, E., Darboux, I., Fournier, P., Strand, M. R., & Volkoff, A. -N. (2011). Lepidopteran transcriptome analysis following infection by phylogenetically unrelated polydnaviruses highlights differential and common responses. Insect Biochemistry and Molecular Biology, 41(8), 582-591. http://doi.org/10.1016/j.ibmb.2011.03.010
  • Rahmi, F. A., Yamin, M., & Sasaerila, Y. (2020). Effect of different organic wastes on the growth of black soldier fly (Hermetia illucens) larvae. Proceedings of the International Conference and the 10th Congress of the Entomological Society of Indonesia (ICCESI 2019), Indonesia, pp. 113-116. https://doi.org/10.2991/absr.k.200513.019
  • Raksasat, R., Lim, J. W., Kiatkittipong, W., Kiatkittipong, K., Ho, Y. C., Lam, M. K., Font-Palma, C., Zaid, H. F. M., & Cheng, C. K. (2020). A review of organic waste enrichment for inducing palatability of black soldier fly larvae: Wastes to valuable resources. Environmental Pollution, 267, 115488. https://doi.org/10.1016/j.envpol.2020.115488
  • Ravi, H. K., Guidou, C., Costil, J., Trespeuch, C., Chemat, F., & Vian, M. A. (2021). Novel insights on the sustainable wet mode fractionation of black soldier fly larvae (Hermetia illucens) into lipids, proteins and chitin. Processes, 9(11), 1888. https://doi.org/10.3390/pr9111888
  • Ravi, H. K., Vian, M. A., Tao, Y., Degrou, A., Costil, J., Trespeuch, C., & Chemat, F. (2019). Alternative solvents for lipid extraction and their effect on protein quality in black soldier fly (Hermetia illucens) larvae. Journal of Cleaner Production, 238, 117861. https://doi.org/10.1016.j.jclepro.2019.117861
  • Renna, M., Schiavone, A., Gai, F., Dabbou, S., Lussiana, C., Malfatto, V., Prearo, M., Capucchio, M.T., Biasato, I., & Biasibetti, E. (2017). Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. Journal of Animal Science and Biotechnology, 8, 1-13. https://doi.org/10.1186/s40104-017-0191-3
  • Sakadevan, K., & Nguyen, M. L. (2017). Livestock production and its impact on nutrient pollution and greenhouse gas emissions. Advances in Agronomy, 141, 147-184. https://doi.org/10.1016/bs.agron.2016.10.002
  • Salomone, R., Saija, G., Mondello, G., Giannetto, A., Fasulo, S., & Savastano, D. (2017). Environmental impact of food waste bioconversion by insects: application of life cycle assessment to process using Hermetia illucens. Journal of Cleaner Production, 140, 890-905. https://doi.org/10.1016/j.jclepro.2016.06.154
  • Secci, G., Mancini, S., Iaconisi, V., Gasco, L., Basto, A., & Parisi, G. (2019). Can the inclusion of black soldier fly in diet affect the flesh quality/nutritional traits of rainbow trout (Oncorhynchus mykiss) after freezing and cooking? International Journal of Food Sciences and Nutrition, 70, 161-171. https://doi.org/10.1080/09637486.2018.1489529
  • Shin, H. S., & Park, S. I. (2019). Novel attacin from Hermetia illucens: cDNA cloning, characterization, and antibacterial properties. Preparative Biochemistry and Biotechnology, 49, 279-285. https://doi.org/10.1080/10826068.2018.1541807
  • Soetemans, L., Uyttebroek, M., D’Hondt, E., & Bastiaens, L. (2019). Use of organic acids to improve fractionation of the black soldier fly larvae juice into lipid-and protein-enriched fractions. European Food Research and Technology, 245(10), 2257-2267. https://doi.org/10.1007/s00217-019-03328-7
  • Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, W., Vermeulen, S. J., Herrero, M., & Carlson, K. M. (2018). Options for keeping the food system within environmental limits. Nature, 562, 519-525. https://doi.org/10.1038/s41586-018-0594-0
  • Stadtlander, T., Stamer, A., Buser, A., Wohlfahrt, J., Leiber, F., & Sandrock, C. (2017). Hermetia illucens meal as fish meal replacement for rainbow trout on farm. Journal of Insects as Food and Feed, 3, 165-175. https://doi.org/10.3920/JIFF2016.0056
  • Su, C. H., Nguyen, H. C., Bui, T. L., & Huang, D. L. (2019). Enzyme-assisted extraction of insect fat for biodiesel production. Journal of Cleaner Production, 223, 436-444. https://doi.org/10.1016/j.jclepro.2019.03.150
  • Teigiserova, D. A., Hamelin, L., & Thomsen, M. (2020). Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Science of The Total Environment, 706, 136033. https://doi.org/10.1016/j.scitotenv.2019.136033
  • Tippayadara, N., Dawood, M. A., Krutmuang, P., Hoseinifar, S. H., Doan, H. V., & Paolucci, M. (2021). Replacement of fish meal by black soldier fly (Hermetia illucens) larvae meal: effects on growth, haematology, and skin mucus immunity of Nile tilapia, Oreochromis niloticus. Animals, 11, 193. https://doi.org/10.3390/ani11010193
  • Ushakova, N., Dontsov, A., Sаkina, N., Brodsky, E., Ratnikova, I., Gavrilova, N., Bаstrakov, A., Kozlova, A., & Nekrasov, R. (2017). Melanin properties at the different stages towards life cycle of the fly Hermetia illucens. Ukrainian Journal of Ecology, 7(4), 424-431. https://doi.org/10.15421/2017_137
  • Verstraete, F. (2013). Risk management of undesirable substances in feed following updated risk assessments. Toxicology and Applied Pharmacology, 270, 230-247. https://doi.org/10.1016/j.taap.2010.09.015
  • Vongvichith, B., Morioka, S., Sugita, T., Phousavanh, N., Phetsanghanh, N., Chanthasone, P., Pommachan, P., & Nakamura, S. (2020). Evaluation of the efficacy of aquaculture feeds for the climbing perch Anabas testudineus: Replacement of fishmeal by black soldier fly Hermetia illucens prepupae. Fisheries Science, 86, 145-151. https://doi.org/10.1007/s12562-019-01381-5
  • Wang, G., Peng, K., Hu, J., Yi, C., Chen, X., Wu, H., & Huang, Y. (2019). Evaluation of defatted black soldier fly (Hermetia illucens L.) larvae meal as an alternative protein ingredient for juvenile Japanese seabass (Lateolabrax japonicus) diets. Aquaculture, 507, 144-154. https://doi.org/10.1016/j.aquaculture.2019.04.023
  • Wiseman, S. A., Dötsch-Klerk, M., Neufingerl, N., & de Oliveira Martins, F. (2019). Future food: Sustainable diets for healthy people and a healthy planet. International Journal of Nutrology, 12, 023-028. https://doi.org/10.1055/s-0039-1695714
  • Xiao, X., Jin, P., Zheng, L., Cai, M., Yu, Z., Yu, J., & Zhang, J. (2018). Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco). Aquaculture Research, 49, 1569-1577. https://doi.org/10.1111/are.13611
  • Xu, J., Luo, X., Fang, G., Zhan, S., Wu, J., Wang, D., & Huang, Y. (2020). Transgenic expression of antimicrobial peptides from black soldier fly enhance resistance against entomopathogenic bacteria in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 127, 103487. https://doi.org/10.1016/j.ibmb.2020.103487
  • Zarantoniello, M., Bruni, L., Randazzo, B., Vargas, A., Gioacchini, G., Truzzi, C., Annibaldi, A., Riolo, P., Parisi, G., & Cardinaletti, G. (2018). Partial dietary inclusion of black soldier fly full-fat prepupae in zebrafish feed: biometric, histological, biochemical, and molecular implications. Zebrafish, 15, 519-532. https://doi.org/10.3390/ani11030720
  • Zarantoniello, M., Zimbelli, A., Randazzo, B., Compagni, M. D., Truzzi, Osimani, A., & Milanović, V. (2020). Black soldier fly reared on roasted coffee by-product and Schizochytrium sp. as a sustainable terrestrial ingredient for aquafeeds production. Aquaculture, 518, 734659. https://doi.org/10.1016/j.aquaculture.2019.734659
  • Zhou, J., Liu, S., Ji, H., & Yu, H. (2018). Effect of replacing dietary fish meal with black soldier fly larvae meal on growth and fatty acid composition of Jian carp (Cyprinus carpio var. Jian). Aquaculture Nutrition, 24, 424-433. https://doi.org/10.1111/anu.12574
There are 77 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences
Journal Section Review Paper
Authors

İbrahim Sadi Çetingül 0000-0002-7608-6176

Syed Rizwan Ali Shah 0000-0002-2752-4854

Publication Date March 28, 2022
Submission Date December 24, 2021
Acceptance Date February 2, 2022
Published in Issue Year 2022

Cite

APA Çetingül, İ. S., & Shah, S. R. A. (2022). Black Soldier Fly (Hermetia illucens) Larvae as an Ecological, Immune Booster and Economical Feedstuff for Aquaculture. Marine Science and Technology Bulletin, 11(1), 52-62. https://doi.org/10.33714/masteb.1041493
AMA Çetingül İS, Shah SRA. Black Soldier Fly (Hermetia illucens) Larvae as an Ecological, Immune Booster and Economical Feedstuff for Aquaculture. Mar. Sci. Tech. Bull. March 2022;11(1):52-62. doi:10.33714/masteb.1041493
Chicago Çetingül, İbrahim Sadi, and Syed Rizwan Ali Shah. “Black Soldier Fly (Hermetia Illucens) Larvae As an Ecological, Immune Booster and Economical Feedstuff for Aquaculture”. Marine Science and Technology Bulletin 11, no. 1 (March 2022): 52-62. https://doi.org/10.33714/masteb.1041493.
EndNote Çetingül İS, Shah SRA (March 1, 2022) Black Soldier Fly (Hermetia illucens) Larvae as an Ecological, Immune Booster and Economical Feedstuff for Aquaculture. Marine Science and Technology Bulletin 11 1 52–62.
IEEE İ. S. Çetingül and S. R. A. Shah, “Black Soldier Fly (Hermetia illucens) Larvae as an Ecological, Immune Booster and Economical Feedstuff for Aquaculture”, Mar. Sci. Tech. Bull., vol. 11, no. 1, pp. 52–62, 2022, doi: 10.33714/masteb.1041493.
ISNAD Çetingül, İbrahim Sadi - Shah, Syed Rizwan Ali. “Black Soldier Fly (Hermetia Illucens) Larvae As an Ecological, Immune Booster and Economical Feedstuff for Aquaculture”. Marine Science and Technology Bulletin 11/1 (March 2022), 52-62. https://doi.org/10.33714/masteb.1041493.
JAMA Çetingül İS, Shah SRA. Black Soldier Fly (Hermetia illucens) Larvae as an Ecological, Immune Booster and Economical Feedstuff for Aquaculture. Mar. Sci. Tech. Bull. 2022;11:52–62.
MLA Çetingül, İbrahim Sadi and Syed Rizwan Ali Shah. “Black Soldier Fly (Hermetia Illucens) Larvae As an Ecological, Immune Booster and Economical Feedstuff for Aquaculture”. Marine Science and Technology Bulletin, vol. 11, no. 1, 2022, pp. 52-62, doi:10.33714/masteb.1041493.
Vancouver Çetingül İS, Shah SRA. Black Soldier Fly (Hermetia illucens) Larvae as an Ecological, Immune Booster and Economical Feedstuff for Aquaculture. Mar. Sci. Tech. Bull. 2022;11(1):52-6.

27116