Research Article
BibTex RIS Cite

On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour

Year 2022, , 41 - 51, 28.03.2022
https://doi.org/10.33714/masteb.1066936

Abstract

External morphology (eidonomy) of marine creatures, developed by the evolution process over the course of millions of years, plays a crucial role in their locomotion and swimming performance. In this paper, hydrodynamic impacts of the cephalofoil tip eidonomy (tip bump) in the eye bulb region of a scalloped hammerhead shark, Sphyrna lewini, are studied with the aid of computational fluid dynamics (CFD). In this regard, two separate geometries are designed here; one corresponding to the real geometry of the hammerhead shark’s cephalofoil with a tip bump (eye bulb region) and another one, a modified version with a flat tip without the aforementioned bump. Turbulent flows encountered in the problem are simulated using the Lam-Bremhorst turbulence model at different angles of attack (AoA) and a sideslip angle, at high Reynolds number, 106, corresponding to the swimming of a juvenile hammerhead shark with a speed of 1 m/s. The results show that the strength (circulation) of the wing tip vortices reduces by the external geometry of the hammerhead’s cephalofoil tip; in this sense, ‘cephalofoil tip’ with its unique morphology behaves as a winglet.

Thanks

The author would like to sincerely acknowledge every single effort done by institutes, organizations and individuals for the protection of ‘hammerhead sharks’ worldwide.

References

  • Bang, K., Kim, J., Lee, S. I., & Choi, H. (2016). Hydrodynamic role of longitudinal dorsal ridges in a leatherback turtle swimming. Scientific Reports, 6, 34283. https://doi.org/10.1038/srep34283
  • Battista, N. A. (2020). Swimming through parameter subspaces of a simple anguilliform swimmer. Integrative and Comparative Biology, 60(5), 1221–1235, https://doi.org/10.1093/icb/icaa130
  • Borazjani, I. (2008). Numerical simulations of fluid-structure interaction problems in biological flows. [Ph.D. Thesis. University of Minnesota].
  • Chen, J. H., Li, S. S., & Nguyen, V. T. (2012). The effect of leading edge protuberances on the performance of small aspect ratio foils. Proceedings of the 15th International Symposium on Flow Visualization, Belarus, pp. 1-16.
  • Copmpagno, L., Dando, M., & Fowler, S. (2005). Sharks of the world (1st ed.). Princeton University Press.
  • Domel, A. G., Saadat, M., Weaver, J. C., Haj-Hariri, H., Bertoldi, K., & Lauder, G. V. (2018). Shark skin-inspired designs that improve aerodynamic performance. Journal of Royal Society Interface, 15, 1-9. https://doi.org/10.1098/rsif.2017.0828
  • Fish, F. E., Schreiber, C. M., Moored, K. W., Liu, G., Dong, H., & Bart-Smith, H. (2016). Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta. Aerospace Journal, 3(20), 1-24. https://doi.org/10.3390/aerospace3030020
  • Gaylord, M. K., Blades, E. L., & Parsons, G. R. (2020). A hydrodynamics assessment of the hammerhead shark cephalofoil. Scientific Reports, 10, 14495. https://doi.org/10.1038/s41598-020-71472-2
  • Houghton, E. L., Carpenter, P. W., Collicott, S. H., & Valentine, D. T. (2015). Aerodynamics for Engineering Students (Seventh Edition). Elsevier Ltd. Publication.
  • Kajiura, S. M., Forni, J. B., & Summers, A. P. (2003). Maneuvering in juvenile carcharhinid and sphyrnid sharks: the role of the hammerhead shark cephalofoil. Zoology, 106, 19–28. https://doi.org/10.1078/0944-2006-00086
  • Kajiura, S. M., Forni, J. B., & Summers, A. P. (2005). Olfactory morphology of carcharhinid and sphyrnid sharks: Does the cephalofoil confer a sensory advantage?. Journal of Morphology, 264, 253-263. https://doi.org/10.1002/jmor.10208
  • Ketchum, J. T., Hearn, A., Klimley, A. P., Espinoza, E., Peñaherrera, C., & Largier, J. L. (2014). Seasonal changes in movements and habitat preferences of the scalloped hammerhead shark (Sphyrna lewini) while refuging near an oceanic island. Marine Biology, 161, 755–767. https://doi.org/10.1007/s00227-013-2375-5
  • Kuznar, Sh. (2017). Morphological variation in olfactory, optic, and electrosensory structure of juvenile scalloped hammerhead sharks (Sphyrna lewini) [Master Thesis. Purdue University].
  • Lam, C. K. G., & Bremhorst, K. A. (1981). A modified form of the k-ε model for predicting wall turbulence. Journal of Fluid Engineering, 103, 456–460. https://doi.org/10.1115/1.3240815
  • Lowry, J. G., & Polhamus, E. C. (1957). A method for predicting lift increments due to flap deflection at low angles of attack in incompressible flow. Report, University of North Texas Libraries.
  • McComb, D. M., Tricas, T. C., & Kajiura, S. M. (2009). Enhanced visual fields in hammerhead sharks. Journal of Experimental Biology, 212, 4010-4018. https://doi.org/10.1242/jeb.032615
  • Miklosovic, D. S., Murray, M. M., Howle, L. E., & Fish, F. E. (2004). Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Physics of Fluids, 16, 39-42. https://doi.org/10.1063/1.1688341
  • Miles, J. G., & Battista, N. A. (2019). Naut your everyday jellyfish model: exploring how tentacles and oral arms impact locomotion. Fluids Journal, 4(169), 1-43. https://doi.org/10.3390/fluids4030169
  • Payne, N. L., Iosilevskii, G., Barnett, A., Fischer, C., Graham, R. T., Gleiss, A. C., & Watanabe, Y. Y. (2016). Great hammerhead sharks swim on their side to reduce transports costs. Nature Communication, 7(12289), 1-5. https://doi.org/10.1038/ncomms12289
  • Royer, M., Maloney, K., Meyer, C., Cardona, E., Payne, N., Whittingham, K., Silva, G., Blandino, C., & Holland, K. (2020). Scalloped hammerhead sharks swim on their side with diel shifts in roll magnitude and periodicity. Animal Biotelemetry, 8, 11. https://doi.org/10.1186/s40317-020-00196-x
  • Sobachkin, A., & Dumnov, G. (2013). Numerical basis of CAD-Embedded CFD. Proceedings of the NAFEMS World Congress, Austria, pp. 1-19.
  • Taheri, A. (2018a). Lagrangian coherent structure analysis of jellyfish swimming using immersed boundary FSI simulations. Journal of Mechanical and Civil Engineering, 15(1), 69-74. https://doi.org/10.9790/1684-1501046974
  • Taheri, A. (2018b). A meta-model for tubercle design of wing planforms inspired by humpback whale flippers. International Journal of Aerospace and Mechanical Engineering, 12(3), 315-328. https://doi.org/10.5281/zendoo.1317268
  • Taheri, A. (2018c). On the hydrodynamic effects of humpback whale’s ventral pleats. American Journal of Fluid Dynamics, 8(2), 47-62. https://doi.org/10.5923/j.ajfd.20180802.02
  • Taheri, A. (2020). Hydrodynamic impacts of prominent longitudinal ridges on the ‘whale shark’ swimming. Research in Zoology, 10(1), 18-30. https://doi.org/10.5923/j.zoology.20201001.03
  • Taheri, A. (2021a). Fluid dynamics and bio-propulsion of animal swimming in nature: Bionics (1st ed.). Arshadan Publication.
  • Taheri, A. (2021b). Lagrangian flow skeletons captured in the wake of a swimming nematode C. elegans using an immersed boundary fluid-structure interaction approach. International Journal of Bioengineering and Life Sciences, 15(7), 71-78.
  • Taheri, A. (2021c). Hydrodynamic analysis of bionic chimerical wing planforms inspired by manta ray eidonomy. Indonesian Journal of Engineering and Science, 2(3), 11-28. https://doi.org/10.51630/ijes.v2i3.25
Year 2022, , 41 - 51, 28.03.2022
https://doi.org/10.33714/masteb.1066936

Abstract

References

  • Bang, K., Kim, J., Lee, S. I., & Choi, H. (2016). Hydrodynamic role of longitudinal dorsal ridges in a leatherback turtle swimming. Scientific Reports, 6, 34283. https://doi.org/10.1038/srep34283
  • Battista, N. A. (2020). Swimming through parameter subspaces of a simple anguilliform swimmer. Integrative and Comparative Biology, 60(5), 1221–1235, https://doi.org/10.1093/icb/icaa130
  • Borazjani, I. (2008). Numerical simulations of fluid-structure interaction problems in biological flows. [Ph.D. Thesis. University of Minnesota].
  • Chen, J. H., Li, S. S., & Nguyen, V. T. (2012). The effect of leading edge protuberances on the performance of small aspect ratio foils. Proceedings of the 15th International Symposium on Flow Visualization, Belarus, pp. 1-16.
  • Copmpagno, L., Dando, M., & Fowler, S. (2005). Sharks of the world (1st ed.). Princeton University Press.
  • Domel, A. G., Saadat, M., Weaver, J. C., Haj-Hariri, H., Bertoldi, K., & Lauder, G. V. (2018). Shark skin-inspired designs that improve aerodynamic performance. Journal of Royal Society Interface, 15, 1-9. https://doi.org/10.1098/rsif.2017.0828
  • Fish, F. E., Schreiber, C. M., Moored, K. W., Liu, G., Dong, H., & Bart-Smith, H. (2016). Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta. Aerospace Journal, 3(20), 1-24. https://doi.org/10.3390/aerospace3030020
  • Gaylord, M. K., Blades, E. L., & Parsons, G. R. (2020). A hydrodynamics assessment of the hammerhead shark cephalofoil. Scientific Reports, 10, 14495. https://doi.org/10.1038/s41598-020-71472-2
  • Houghton, E. L., Carpenter, P. W., Collicott, S. H., & Valentine, D. T. (2015). Aerodynamics for Engineering Students (Seventh Edition). Elsevier Ltd. Publication.
  • Kajiura, S. M., Forni, J. B., & Summers, A. P. (2003). Maneuvering in juvenile carcharhinid and sphyrnid sharks: the role of the hammerhead shark cephalofoil. Zoology, 106, 19–28. https://doi.org/10.1078/0944-2006-00086
  • Kajiura, S. M., Forni, J. B., & Summers, A. P. (2005). Olfactory morphology of carcharhinid and sphyrnid sharks: Does the cephalofoil confer a sensory advantage?. Journal of Morphology, 264, 253-263. https://doi.org/10.1002/jmor.10208
  • Ketchum, J. T., Hearn, A., Klimley, A. P., Espinoza, E., Peñaherrera, C., & Largier, J. L. (2014). Seasonal changes in movements and habitat preferences of the scalloped hammerhead shark (Sphyrna lewini) while refuging near an oceanic island. Marine Biology, 161, 755–767. https://doi.org/10.1007/s00227-013-2375-5
  • Kuznar, Sh. (2017). Morphological variation in olfactory, optic, and electrosensory structure of juvenile scalloped hammerhead sharks (Sphyrna lewini) [Master Thesis. Purdue University].
  • Lam, C. K. G., & Bremhorst, K. A. (1981). A modified form of the k-ε model for predicting wall turbulence. Journal of Fluid Engineering, 103, 456–460. https://doi.org/10.1115/1.3240815
  • Lowry, J. G., & Polhamus, E. C. (1957). A method for predicting lift increments due to flap deflection at low angles of attack in incompressible flow. Report, University of North Texas Libraries.
  • McComb, D. M., Tricas, T. C., & Kajiura, S. M. (2009). Enhanced visual fields in hammerhead sharks. Journal of Experimental Biology, 212, 4010-4018. https://doi.org/10.1242/jeb.032615
  • Miklosovic, D. S., Murray, M. M., Howle, L. E., & Fish, F. E. (2004). Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Physics of Fluids, 16, 39-42. https://doi.org/10.1063/1.1688341
  • Miles, J. G., & Battista, N. A. (2019). Naut your everyday jellyfish model: exploring how tentacles and oral arms impact locomotion. Fluids Journal, 4(169), 1-43. https://doi.org/10.3390/fluids4030169
  • Payne, N. L., Iosilevskii, G., Barnett, A., Fischer, C., Graham, R. T., Gleiss, A. C., & Watanabe, Y. Y. (2016). Great hammerhead sharks swim on their side to reduce transports costs. Nature Communication, 7(12289), 1-5. https://doi.org/10.1038/ncomms12289
  • Royer, M., Maloney, K., Meyer, C., Cardona, E., Payne, N., Whittingham, K., Silva, G., Blandino, C., & Holland, K. (2020). Scalloped hammerhead sharks swim on their side with diel shifts in roll magnitude and periodicity. Animal Biotelemetry, 8, 11. https://doi.org/10.1186/s40317-020-00196-x
  • Sobachkin, A., & Dumnov, G. (2013). Numerical basis of CAD-Embedded CFD. Proceedings of the NAFEMS World Congress, Austria, pp. 1-19.
  • Taheri, A. (2018a). Lagrangian coherent structure analysis of jellyfish swimming using immersed boundary FSI simulations. Journal of Mechanical and Civil Engineering, 15(1), 69-74. https://doi.org/10.9790/1684-1501046974
  • Taheri, A. (2018b). A meta-model for tubercle design of wing planforms inspired by humpback whale flippers. International Journal of Aerospace and Mechanical Engineering, 12(3), 315-328. https://doi.org/10.5281/zendoo.1317268
  • Taheri, A. (2018c). On the hydrodynamic effects of humpback whale’s ventral pleats. American Journal of Fluid Dynamics, 8(2), 47-62. https://doi.org/10.5923/j.ajfd.20180802.02
  • Taheri, A. (2020). Hydrodynamic impacts of prominent longitudinal ridges on the ‘whale shark’ swimming. Research in Zoology, 10(1), 18-30. https://doi.org/10.5923/j.zoology.20201001.03
  • Taheri, A. (2021a). Fluid dynamics and bio-propulsion of animal swimming in nature: Bionics (1st ed.). Arshadan Publication.
  • Taheri, A. (2021b). Lagrangian flow skeletons captured in the wake of a swimming nematode C. elegans using an immersed boundary fluid-structure interaction approach. International Journal of Bioengineering and Life Sciences, 15(7), 71-78.
  • Taheri, A. (2021c). Hydrodynamic analysis of bionic chimerical wing planforms inspired by manta ray eidonomy. Indonesian Journal of Engineering and Science, 2(3), 11-28. https://doi.org/10.51630/ijes.v2i3.25
There are 28 citations in total.

Details

Primary Language English
Subjects Maritime Engineering
Journal Section Research Article
Authors

Arash Taheri 0000-0002-3031-8314

Publication Date March 28, 2022
Submission Date February 2, 2022
Acceptance Date March 3, 2022
Published in Issue Year 2022

Cite

APA Taheri, A. (2022). On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour. Marine Science and Technology Bulletin, 11(1), 41-51. https://doi.org/10.33714/masteb.1066936
AMA Taheri A. On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour. Mar. Sci. Tech. Bull. March 2022;11(1):41-51. doi:10.33714/masteb.1066936
Chicago Taheri, Arash. “On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour”. Marine Science and Technology Bulletin 11, no. 1 (March 2022): 41-51. https://doi.org/10.33714/masteb.1066936.
EndNote Taheri A (March 1, 2022) On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour. Marine Science and Technology Bulletin 11 1 41–51.
IEEE A. Taheri, “On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour”, Mar. Sci. Tech. Bull., vol. 11, no. 1, pp. 41–51, 2022, doi: 10.33714/masteb.1066936.
ISNAD Taheri, Arash. “On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour”. Marine Science and Technology Bulletin 11/1 (March 2022), 41-51. https://doi.org/10.33714/masteb.1066936.
JAMA Taheri A. On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour. Mar. Sci. Tech. Bull. 2022;11:41–51.
MLA Taheri, Arash. “On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour”. Marine Science and Technology Bulletin, vol. 11, no. 1, 2022, pp. 41-51, doi:10.33714/masteb.1066936.
Vancouver Taheri A. On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour. Mar. Sci. Tech. Bull. 2022;11(1):41-5.

27116