Impact of Nutrient Load Coming From Göksu River on the Northeastern Mediterranean
Year 2021,
, 295 - 305, 22.09.2021
Ece Kılıç
,
Nebil Yücel
Abstract
Even though North-Eastern Mediterranean (NE Med) is classified as oligotrophic, inshore areas are highly eutrophic due to the discharge of silicate and nitrate-rich surface waters. Aim of this study was to investigate the nutrient load coming from the Göksu River and to estimate its impact on the river domain using satellite images. Monthly, average nitrite (NO2), nitrate (NO3), ammonium (NH4) and phosphate (PO4) load found to be varying between 0.07-31.2 ton/month, 15-1226 ton/month, 0.5-539 ton/month, 1-267 ton/month, respectively. Satellite images showed that surface chlorophyll–a (chl-a) in the river downstream had an increase in both winter and spring seasons as a result of intense precipitation; while, primary production at the offshore regions was mainly impacted by winter mixing and summer stratification. The highest chl-a concentration was observed at the river impacted zone and decreased by more than two folds at the offshore regions. Increased NO3 load observed during winter and spring leads to phytoplankton blooms in the river downstream. The high P content of Göksu River surface waters has increased the productivity at all seasons. As a consequence, correlation analysis showed significant relationship between surface chl-a concentration and PO4-NO3 load.
Thanks
We would like to thank NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group; since, we used publicly available sea-viewing wide field of view sensor ocean color data. This article is a part of doctoral thesis statement namely “Göksu Nehri (Kuzeydoğu Akdeniz) Etki Alanı ve Civarında Pikoplankton (Heterotrofik bakteri, Synechococcus, Prochlorococcus)’un Yüzey Suları ve Su Kolonundaki Mevsimsel Dağılımı” which was conducted under İskenderun Technical University, Institute of Engineering and Science.
References
- Ackerman, D., & Schiff, K. (2003). Modeling storm water mass emissions to the southern California bight. Journal of Environmental Engineering, 129, 308–317 https://doi.org/10.1061/(ASCE)0733-9372(2003)129:4(308)
- Akçay, İ., & Tuğrul, T. (2018). Riverine nutrient inputs to the Mersin Bay, northeastern Mediterranean. Proceedings of International Marine & Freshwater Sciences Symposium, Turkey. pp. 56-60.
- Akpınar, A., Yılmaz, E., Bettina, A. F., & Salihoğlu, B. (2016). Physical oceanography of the Eastern Mediterranean Sea. In C. Turan, B. Salihoğlu., E. Özgür Özbek & B. Öztürk (Eds.), The Turkish part of the Mediterranean Sea; Marine biodiversity, fisheries, conservation and governance. Turkish Marine Research Foundation (TUDAV) (pp. 1-14). Publication No: 43.
- Ayaz, S., Koyunluoğlu Aynur, Ş., Atasoy Aytış, E., Erdoğan, N., Metin, E., Doğan, Ö., Uyuşur, B., Haksevenler, B. H. G., Dilaver, M., Beşiktaş, M., Kalay, B., Aydöner, C., Sarıkaya, Ö., & Akyol, O. (2013). Havza Koruma Eylem Planlarının Hazırlanması Projesi. Doğu Akdeniz Havzası Nihai Raporu. TÜBİTAK MAM (In Turkish)
- Baith, K., Lindsay, R., Fu, G., & McClain, C. R. (2001). SeaDAS, a data analysis system for ocean-color satellite sensors. EOS, Transactions, American Geophysical Union. AGU, 82. pg 202.
- Bettiol, C., Flaviano, C., Stefano, G., Molinaroli, E., Rossini, P., Zaggia, L., & Zonta, R. (2005). Atmospheric and riverine inputs of metals, nutrients and persistent organic pollutants into the lagoon of Venice. Hydrobiologica, 550, 151-165. https://doi.org/10.1007/s10750-005-4372-2
- Beusen, A. H., Bouwman, A. F., Van Beek, L. P., Mogollón, J. M., & Middelburg, J. J. (2016). Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences, 13(8), 2441-2451. https://doi.org/10.5194/bg-13-2441-2016
- Birkinshaw, S. J., & Ewen, J. (2000). Nitrogen transformation component for SHETRAN catchment nitrate transport modelling. Journal of Hydrology, 230, 1-17. https://doi.org/10.1016/S0022-1694(00)00174-8
- Buhvestova, O., Kangur, K., Haldna, M., & Möls, T. (2011). Nitrogen and phosphorus in Estonian rivers discharging into Lake Peipsi: Estimation of loads and seasonal and spatial distribution of concentrations. Estonian Journal of Ecology, 60(1), 18-38. https://doi.org/10.3176/eco.2011.1.03
- Demirel, Z., Özer, Z., & Özer, O. (2011). Investigation and modeling of water quality of Göksu River (Cleadnos) in an international protected area by GIS. The Online Journal of Science and Technology. 1(1), 7-17. https://doi.org/10.1007/s11442-011-0855-4
- DSİ. (2019). Rasatlar Bilgi Sistemi. Retrieved on December 10, 2019, from http://svtbilgi.dsi.gov.tr/Bilgi.aspx?istasyon=D17A053%20KARGICAK%20G%C3%96KSU%20N
- EMCC. (2020). Eastern Mediterranean Climate Center. Retrieved on January 1, 2020, from http://www.emcc.mgm.gov.tr/archiveviewaspx?y=2014&m=02
- Goldman, J., McCarthy, J., & Peavey, D. (1979). Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature, 279, 210–215. https://doi.org/10.1038/279210a0
- Guerzoni, S., Chester, R., Dulac, F., Herut, B., Loye-Pilot, M. D., Measures, C., Migon, C., Molinaroli, E., Moulin, C., Rossini, P., Saydam, C., Soudine, A., & Ziveri, P. (1999). The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea. Progress in Oceanography. 44, 147–190. https://doi.org/10.1016/S0079-6611(99)00024-5
- Hu, C., Lee, Z., & Franz, B. (2012). Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three‐band reflectance difference. Journal of Geophysical Research: Oceans, 117(C1), C01011. https://doi.org/10.1029/2011JC007395
- Johnes, P. J. (2007). Uncertainties in annual riverine phosphorus load estimation: impact of load estimation methodology, sampling frequency, baseflow index and catchment population density. Journal of Hydrology, 332(1-2), 241-258. https://doi.org/10.1016/j.jhydrol.2006.07.006
- Kangur, K., & Möls, T. (2008). Changes in spatial distribution of phosphorus and nitrogen in the large north-temperate lowland Lake Peipsi (Estonia/Russia). Hydrobiologia, 599, 31–39. https://doi.org/10.1007/s10750-007-9204-0
- Kılıç, E., Akpınar, A., & Yücel, N. (2018). The Asi River’s estimated nutrient load and effects on the Eastern Mediterranean. Aquatic Sciences and Engineering. 33(2), 61-66. https://doi.org/10.18864/ase201810
- Koçak, M., Kubilay, N., Tuğrul, S., & Mihalopoulus, N. (2010). Atmospheric nutrient inputs to the northern Levantine basin from a long-term observation: sources and comparison with riverine inputs. Biogeosciences, 7(12), 4037-4050 https://doi.org/10.5194/bg-7-4037-2010
- Koçak, M., Nimmo, M., Kubilay, N., & Herut, B. (2004). Spatiotemporal aerosol trace metal concentrations and sources in the Levantine basin of the eastern Mediterranean, Atmospheric Environment, 38, 2133–2144. https://doi.org/10.1016/j.atmosenv.2004.01.020
- Krom, M. D., Kress, N., Brenner, S., & Gordon, L. (1991). Phosphorous limitation of primary productivity in the Eastern Mediterranean Sea, Limnology and Oceanography, 36, 424-432. https://doi.org/10.4319/lo.1991.36.3.0424
- Kubilay, N., Nickovic, S., Moulin, C., & Dulac, F. (2000). An illustration of the transport and deposition of mineral dust onto the eastern Mediterranean. Atmospheric Environment, 34, 1293-1303. https://doi.org/10.1016/S1352-2310(99)00179-X
- Latasa, M., Cabello, A. M., Morán, X. A. G., Massana, R., & Scharek, R. (2017). Distribution of phytoplankton groups within the deep chlorophyll maximum. Limnology and Oceanography, 62(2), 665-685. https://doi.org/10.1002/lno.10452
- Laznik, M., Stålnacke, P., Grimvall, A., & Wittgren, H. B. (1999). Riverine input of nutrients to the Gulf of Riga—temporal and spatial variation. Journal of Marine Systems. 23(1-3), 11-25. https://doi.org/10.1016/S0924-7963(99)00048-2
- Ledoux, E., Gomez, E., Monget, J .M., Viavattene, C., Viennot, P., Ducharne, A., Benoit, M., Mignolet, C., Schott, C., & Mary, B. (2007). Agriculture and groundwater nitrate contamination in the Seine basin. The STICS–MODCOU modelling chain. Science of the Total Environment, 375(1-3), 33-47. https://doi.org/10.1016/j.scitotenv.2006
- Mena, C., Reglero, P., Hidalgo, M., Sintes, E., Santiago, R., Martín, M., Moyà, G., & Balbín, R. (2019). Phytoplankton community structure is driven by stratification in the oligotrophic Mediterranean Sea. Frontiers in Microbiology, 10(1968), 1-15. https://doi.org/10.3389/fmicb.2019.01698
- Ministry of Forestry and Water Management. (2015). Surface Water Quality Management Regulation. Official Newspaper. No: 29327
- Ministry of Forestry and Water Management. (2016). Regulation on the Identification of Sensitive Water Masses and Improving Water Quality. Official Newspaper. No: 29927
- Morel, A., & Maritorena, S. (2001). Bio‐optical properties of oceanic waters: A reappraisal. Journal of Geophysical Research: Oceans, 106(C4), 7163-7180. https://doi.org/10.1029/2000JC000319
- Moschonas, G., Gowen, R. J., Paterson, R. F., Mitchell, E., Stewart, B. M., McNeill, S., Glibert, P. T., & Davidson, K. (2017). Nitrogen dynamics and phytoplankton community structure: the role of organic nutrients. Biogeochemistry, 134(1-2), 125-145. https://doi.org/10.1007/s10533-017-0351-8
- NASA Goddard Space Flight Center, Ocean Biology Processing Group. (2014). Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Ocean Color Data, NASA OB.DAAC, Greenbelt, MD, USA. Retrieved on March 1, 2020, from http://doi.org/10.5067/ORBVIEW-2/SEAWIFS_OC.2014.0 Maintained by NASA Ocean Biology Distributed Active Archive Center (OB.DAAC), Goddard Space Flight Center, Greenbelt MD.
- Nixon, S. W. (1995). Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia, 41(1), 199-219. https://doi.org/10.1080/00785236.1995.10422044
- Ogwueleka, T. C. (2015). Use of multivariate statistical techniques for the evaluation of temporal and spatial variations in water quality of the Kaduna River, Nigeria. Environmental Monitoring and Assessment, 187(3), 1-17. https://doi.org/10.1007/s10661-015-4354-4
- Painter, S. C., Patey, M. D., Tarran, G. A., & Torres-Valdés, S. (2014). Picoeukaryote distribution in relation to nitrate uptake in the oceanic nitracline. Aquatic Microbial Ecology, 72(3), 195-213.
- Quilbé, R., Rousseau, A. N., Duchemin, M., Poulin, A., Gangbazo, G., & Villeneuve, J. P. (2006). Selecting a calculation method to estimate sediment and nutrient loads in streams: application to the Beaurivage River (Québec, Canada). Journal of Hydrology, 326(1-4), 295-310. https://doi.org/10.1016/j.jhydrol.2005.11.008
- Redden, A. M., Kobayashi, T., Suthers, I., Bowling, L., Rissik, D., & Newton, G. (2009). Plankton processes and the environment. In I. M. Suthers & D. Rissik (Eds.), Plankton: A guide to their ecology and monitoring for water quality (pp. 159-196).CRC Press.
- Doğan Sağlamtimur, N., & Tuğrul, S. (2008). Doğu Akdeniz’de Akarsu Etkisindeki Kıyısal Bölge Sularının Özelliklerinin Açık Denizdekiler ile Karşılaştırılması [Comparison of offshore and river-influenced coastal waters in the eastern Mediterranean]. Ekoloji, 17(68), 17-23. https://doi.org/10.5053/ekoloji.2008.683
- Shamrukh, M., Corapcioglu, M., & Hassona, F. (2001). Modeling the effect of chemical fertilizers on ground water quality in the Nile Valley Aquifer, Egypt. Ground Water, 39(1), 59–67. https://doi.org/10.1111/j.1745-6584.2001.tb00351.x
- Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques-a case study. Analytica Chimica Acta, 538(1), 355-374. https://doi.org/10.1016/j.aca.2005.02.006
- Siokou-Frangou, U., Christaki, M. G., Mazzocchi, M., Montresor, M., Ribera D’Alcala, D., & Zingone, A. (2010). Plankton in the open Mediterranean Sea: A review. Biogeosciences, 7(5), 1543–1586.
- Song, M. Y., Leprieur, F., Thomas, A., Lek-Ang, S., Chon, T. S., & Lek, S. (2009). Impact of agricultural land use on aquatic insect assemblages in the Garonne river catchment (SW France). Aquatic Ecology, 43, 999–1009. https://doi.org/10.1007/s10452-008-9218-3
- Stalnacke, P., Grimvall, A., Sundblad, K., & Tonderski, A. (1999). Estimation of riverine loads of nitrogen and phosphorus to the Baltic Sea, 1970–1993. Environmental Monitoring and Assessment, 58(2), 173-200. https://doi.org/10.1023/A:1006073015871
- Tugrul, S., Yucel, N., & Akcay, I. (2016). Chemical oceanography of north eastern Mediterranean. In C. Turan, B. Salihoğlu, E. Özgür Özbek, & B. Öztürk (Eds.), The Turkish part of the Mediterranean Sea; Marine biodiversity, fisheries, conservation and governance (pp. 15-29). Turkish Marine Research Foundation (TUDAV), Publication No: 43.
- Uysal, Z., Tuğrul, S., Çevik, C., Koçak, M., Yücel, N., Örek, H., & Örek, Y. A. (2019). Impact assessment of Hydro Electric Power Plants (HEPP) to marine ecosystems. TÜBİTAK project report, project no: 116Y125. Turkey. 271p.
- Yıldırım, Ü., Güler, C., Kurt, M. A., Geçgel, C. (2018). Göksu Nehri akış yolu boyunca ana element değişimlerinin incelenmesi [Investigation of changes in the major elements along the course of Göksu River]. Proceedings of HİDRO’2018: Ulusal Hidrojeoloji ve Su Kaynakları Sempozyumu [National Symposium on Hydrogeology and Water Resources], Turkey. (In Turkish)
- Yücel, N., Uysal, Z., & Tuğrul, S. (2017). Variability in phytoplankton pigment composition in Mersin Bay. Aquatic Science and Engineering, 32(1), 49-70 https://doi.org/10.18864/TJAS201705