Research Article
BibTex RIS Cite

On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour

Year 2022, Volume: 11 Issue: 1, 41 - 51, 28.03.2022
https://doi.org/10.33714/masteb.1066936

Abstract

External morphology (eidonomy) of marine creatures, developed by the evolution process over the course of millions of years, plays a crucial role in their locomotion and swimming performance. In this paper, hydrodynamic impacts of the cephalofoil tip eidonomy (tip bump) in the eye bulb region of a scalloped hammerhead shark, Sphyrna lewini, are studied with the aid of computational fluid dynamics (CFD). In this regard, two separate geometries are designed here; one corresponding to the real geometry of the hammerhead shark’s cephalofoil with a tip bump (eye bulb region) and another one, a modified version with a flat tip without the aforementioned bump. Turbulent flows encountered in the problem are simulated using the Lam-Bremhorst turbulence model at different angles of attack (AoA) and a sideslip angle, at high Reynolds number, 106, corresponding to the swimming of a juvenile hammerhead shark with a speed of 1 m/s. The results show that the strength (circulation) of the wing tip vortices reduces by the external geometry of the hammerhead’s cephalofoil tip; in this sense, ‘cephalofoil tip’ with its unique morphology behaves as a winglet.

Thanks

The author would like to sincerely acknowledge every single effort done by institutes, organizations and individuals for the protection of ‘hammerhead sharks’ worldwide.

References

  • Bang, K., Kim, J., Lee, S. I., & Choi, H. (2016). Hydrodynamic role of longitudinal dorsal ridges in a leatherback turtle swimming. Scientific Reports, 6, 34283. https://doi.org/10.1038/srep34283
  • Battista, N. A. (2020). Swimming through parameter subspaces of a simple anguilliform swimmer. Integrative and Comparative Biology, 60(5), 1221–1235, https://doi.org/10.1093/icb/icaa130
  • Borazjani, I. (2008). Numerical simulations of fluid-structure interaction problems in biological flows. [Ph.D. Thesis. University of Minnesota].
  • Chen, J. H., Li, S. S., & Nguyen, V. T. (2012). The effect of leading edge protuberances on the performance of small aspect ratio foils. Proceedings of the 15th International Symposium on Flow Visualization, Belarus, pp. 1-16.
  • Copmpagno, L., Dando, M., & Fowler, S. (2005). Sharks of the world (1st ed.). Princeton University Press.
  • Domel, A. G., Saadat, M., Weaver, J. C., Haj-Hariri, H., Bertoldi, K., & Lauder, G. V. (2018). Shark skin-inspired designs that improve aerodynamic performance. Journal of Royal Society Interface, 15, 1-9. https://doi.org/10.1098/rsif.2017.0828
  • Fish, F. E., Schreiber, C. M., Moored, K. W., Liu, G., Dong, H., & Bart-Smith, H. (2016). Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta. Aerospace Journal, 3(20), 1-24. https://doi.org/10.3390/aerospace3030020
  • Gaylord, M. K., Blades, E. L., & Parsons, G. R. (2020). A hydrodynamics assessment of the hammerhead shark cephalofoil. Scientific Reports, 10, 14495. https://doi.org/10.1038/s41598-020-71472-2
  • Houghton, E. L., Carpenter, P. W., Collicott, S. H., & Valentine, D. T. (2015). Aerodynamics for Engineering Students (Seventh Edition). Elsevier Ltd. Publication.
  • Kajiura, S. M., Forni, J. B., & Summers, A. P. (2003). Maneuvering in juvenile carcharhinid and sphyrnid sharks: the role of the hammerhead shark cephalofoil. Zoology, 106, 19–28. https://doi.org/10.1078/0944-2006-00086
  • Kajiura, S. M., Forni, J. B., & Summers, A. P. (2005). Olfactory morphology of carcharhinid and sphyrnid sharks: Does the cephalofoil confer a sensory advantage?. Journal of Morphology, 264, 253-263. https://doi.org/10.1002/jmor.10208
  • Ketchum, J. T., Hearn, A., Klimley, A. P., Espinoza, E., Peñaherrera, C., & Largier, J. L. (2014). Seasonal changes in movements and habitat preferences of the scalloped hammerhead shark (Sphyrna lewini) while refuging near an oceanic island. Marine Biology, 161, 755–767. https://doi.org/10.1007/s00227-013-2375-5
  • Kuznar, Sh. (2017). Morphological variation in olfactory, optic, and electrosensory structure of juvenile scalloped hammerhead sharks (Sphyrna lewini) [Master Thesis. Purdue University].
  • Lam, C. K. G., & Bremhorst, K. A. (1981). A modified form of the k-ε model for predicting wall turbulence. Journal of Fluid Engineering, 103, 456–460. https://doi.org/10.1115/1.3240815
  • Lowry, J. G., & Polhamus, E. C. (1957). A method for predicting lift increments due to flap deflection at low angles of attack in incompressible flow. Report, University of North Texas Libraries.
  • McComb, D. M., Tricas, T. C., & Kajiura, S. M. (2009). Enhanced visual fields in hammerhead sharks. Journal of Experimental Biology, 212, 4010-4018. https://doi.org/10.1242/jeb.032615
  • Miklosovic, D. S., Murray, M. M., Howle, L. E., & Fish, F. E. (2004). Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Physics of Fluids, 16, 39-42. https://doi.org/10.1063/1.1688341
  • Miles, J. G., & Battista, N. A. (2019). Naut your everyday jellyfish model: exploring how tentacles and oral arms impact locomotion. Fluids Journal, 4(169), 1-43. https://doi.org/10.3390/fluids4030169
  • Payne, N. L., Iosilevskii, G., Barnett, A., Fischer, C., Graham, R. T., Gleiss, A. C., & Watanabe, Y. Y. (2016). Great hammerhead sharks swim on their side to reduce transports costs. Nature Communication, 7(12289), 1-5. https://doi.org/10.1038/ncomms12289
  • Royer, M., Maloney, K., Meyer, C., Cardona, E., Payne, N., Whittingham, K., Silva, G., Blandino, C., & Holland, K. (2020). Scalloped hammerhead sharks swim on their side with diel shifts in roll magnitude and periodicity. Animal Biotelemetry, 8, 11. https://doi.org/10.1186/s40317-020-00196-x
  • Sobachkin, A., & Dumnov, G. (2013). Numerical basis of CAD-Embedded CFD. Proceedings of the NAFEMS World Congress, Austria, pp. 1-19.
  • Taheri, A. (2018a). Lagrangian coherent structure analysis of jellyfish swimming using immersed boundary FSI simulations. Journal of Mechanical and Civil Engineering, 15(1), 69-74. https://doi.org/10.9790/1684-1501046974
  • Taheri, A. (2018b). A meta-model for tubercle design of wing planforms inspired by humpback whale flippers. International Journal of Aerospace and Mechanical Engineering, 12(3), 315-328. https://doi.org/10.5281/zendoo.1317268
  • Taheri, A. (2018c). On the hydrodynamic effects of humpback whale’s ventral pleats. American Journal of Fluid Dynamics, 8(2), 47-62. https://doi.org/10.5923/j.ajfd.20180802.02
  • Taheri, A. (2020). Hydrodynamic impacts of prominent longitudinal ridges on the ‘whale shark’ swimming. Research in Zoology, 10(1), 18-30. https://doi.org/10.5923/j.zoology.20201001.03
  • Taheri, A. (2021a). Fluid dynamics and bio-propulsion of animal swimming in nature: Bionics (1st ed.). Arshadan Publication.
  • Taheri, A. (2021b). Lagrangian flow skeletons captured in the wake of a swimming nematode C. elegans using an immersed boundary fluid-structure interaction approach. International Journal of Bioengineering and Life Sciences, 15(7), 71-78.
  • Taheri, A. (2021c). Hydrodynamic analysis of bionic chimerical wing planforms inspired by manta ray eidonomy. Indonesian Journal of Engineering and Science, 2(3), 11-28. https://doi.org/10.51630/ijes.v2i3.25
Year 2022, Volume: 11 Issue: 1, 41 - 51, 28.03.2022
https://doi.org/10.33714/masteb.1066936

Abstract

References

  • Bang, K., Kim, J., Lee, S. I., & Choi, H. (2016). Hydrodynamic role of longitudinal dorsal ridges in a leatherback turtle swimming. Scientific Reports, 6, 34283. https://doi.org/10.1038/srep34283
  • Battista, N. A. (2020). Swimming through parameter subspaces of a simple anguilliform swimmer. Integrative and Comparative Biology, 60(5), 1221–1235, https://doi.org/10.1093/icb/icaa130
  • Borazjani, I. (2008). Numerical simulations of fluid-structure interaction problems in biological flows. [Ph.D. Thesis. University of Minnesota].
  • Chen, J. H., Li, S. S., & Nguyen, V. T. (2012). The effect of leading edge protuberances on the performance of small aspect ratio foils. Proceedings of the 15th International Symposium on Flow Visualization, Belarus, pp. 1-16.
  • Copmpagno, L., Dando, M., & Fowler, S. (2005). Sharks of the world (1st ed.). Princeton University Press.
  • Domel, A. G., Saadat, M., Weaver, J. C., Haj-Hariri, H., Bertoldi, K., & Lauder, G. V. (2018). Shark skin-inspired designs that improve aerodynamic performance. Journal of Royal Society Interface, 15, 1-9. https://doi.org/10.1098/rsif.2017.0828
  • Fish, F. E., Schreiber, C. M., Moored, K. W., Liu, G., Dong, H., & Bart-Smith, H. (2016). Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta. Aerospace Journal, 3(20), 1-24. https://doi.org/10.3390/aerospace3030020
  • Gaylord, M. K., Blades, E. L., & Parsons, G. R. (2020). A hydrodynamics assessment of the hammerhead shark cephalofoil. Scientific Reports, 10, 14495. https://doi.org/10.1038/s41598-020-71472-2
  • Houghton, E. L., Carpenter, P. W., Collicott, S. H., & Valentine, D. T. (2015). Aerodynamics for Engineering Students (Seventh Edition). Elsevier Ltd. Publication.
  • Kajiura, S. M., Forni, J. B., & Summers, A. P. (2003). Maneuvering in juvenile carcharhinid and sphyrnid sharks: the role of the hammerhead shark cephalofoil. Zoology, 106, 19–28. https://doi.org/10.1078/0944-2006-00086
  • Kajiura, S. M., Forni, J. B., & Summers, A. P. (2005). Olfactory morphology of carcharhinid and sphyrnid sharks: Does the cephalofoil confer a sensory advantage?. Journal of Morphology, 264, 253-263. https://doi.org/10.1002/jmor.10208
  • Ketchum, J. T., Hearn, A., Klimley, A. P., Espinoza, E., Peñaherrera, C., & Largier, J. L. (2014). Seasonal changes in movements and habitat preferences of the scalloped hammerhead shark (Sphyrna lewini) while refuging near an oceanic island. Marine Biology, 161, 755–767. https://doi.org/10.1007/s00227-013-2375-5
  • Kuznar, Sh. (2017). Morphological variation in olfactory, optic, and electrosensory structure of juvenile scalloped hammerhead sharks (Sphyrna lewini) [Master Thesis. Purdue University].
  • Lam, C. K. G., & Bremhorst, K. A. (1981). A modified form of the k-ε model for predicting wall turbulence. Journal of Fluid Engineering, 103, 456–460. https://doi.org/10.1115/1.3240815
  • Lowry, J. G., & Polhamus, E. C. (1957). A method for predicting lift increments due to flap deflection at low angles of attack in incompressible flow. Report, University of North Texas Libraries.
  • McComb, D. M., Tricas, T. C., & Kajiura, S. M. (2009). Enhanced visual fields in hammerhead sharks. Journal of Experimental Biology, 212, 4010-4018. https://doi.org/10.1242/jeb.032615
  • Miklosovic, D. S., Murray, M. M., Howle, L. E., & Fish, F. E. (2004). Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Physics of Fluids, 16, 39-42. https://doi.org/10.1063/1.1688341
  • Miles, J. G., & Battista, N. A. (2019). Naut your everyday jellyfish model: exploring how tentacles and oral arms impact locomotion. Fluids Journal, 4(169), 1-43. https://doi.org/10.3390/fluids4030169
  • Payne, N. L., Iosilevskii, G., Barnett, A., Fischer, C., Graham, R. T., Gleiss, A. C., & Watanabe, Y. Y. (2016). Great hammerhead sharks swim on their side to reduce transports costs. Nature Communication, 7(12289), 1-5. https://doi.org/10.1038/ncomms12289
  • Royer, M., Maloney, K., Meyer, C., Cardona, E., Payne, N., Whittingham, K., Silva, G., Blandino, C., & Holland, K. (2020). Scalloped hammerhead sharks swim on their side with diel shifts in roll magnitude and periodicity. Animal Biotelemetry, 8, 11. https://doi.org/10.1186/s40317-020-00196-x
  • Sobachkin, A., & Dumnov, G. (2013). Numerical basis of CAD-Embedded CFD. Proceedings of the NAFEMS World Congress, Austria, pp. 1-19.
  • Taheri, A. (2018a). Lagrangian coherent structure analysis of jellyfish swimming using immersed boundary FSI simulations. Journal of Mechanical and Civil Engineering, 15(1), 69-74. https://doi.org/10.9790/1684-1501046974
  • Taheri, A. (2018b). A meta-model for tubercle design of wing planforms inspired by humpback whale flippers. International Journal of Aerospace and Mechanical Engineering, 12(3), 315-328. https://doi.org/10.5281/zendoo.1317268
  • Taheri, A. (2018c). On the hydrodynamic effects of humpback whale’s ventral pleats. American Journal of Fluid Dynamics, 8(2), 47-62. https://doi.org/10.5923/j.ajfd.20180802.02
  • Taheri, A. (2020). Hydrodynamic impacts of prominent longitudinal ridges on the ‘whale shark’ swimming. Research in Zoology, 10(1), 18-30. https://doi.org/10.5923/j.zoology.20201001.03
  • Taheri, A. (2021a). Fluid dynamics and bio-propulsion of animal swimming in nature: Bionics (1st ed.). Arshadan Publication.
  • Taheri, A. (2021b). Lagrangian flow skeletons captured in the wake of a swimming nematode C. elegans using an immersed boundary fluid-structure interaction approach. International Journal of Bioengineering and Life Sciences, 15(7), 71-78.
  • Taheri, A. (2021c). Hydrodynamic analysis of bionic chimerical wing planforms inspired by manta ray eidonomy. Indonesian Journal of Engineering and Science, 2(3), 11-28. https://doi.org/10.51630/ijes.v2i3.25
There are 28 citations in total.

Details

Primary Language English
Subjects Maritime Engineering
Journal Section Research Article
Authors

Arash Taheri 0000-0002-3031-8314

Publication Date March 28, 2022
Submission Date February 2, 2022
Acceptance Date March 3, 2022
Published in Issue Year 2022 Volume: 11 Issue: 1

Cite

APA Taheri, A. (2022). On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour. Marine Science and Technology Bulletin, 11(1), 41-51. https://doi.org/10.33714/masteb.1066936
AMA Taheri A. On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour. Mar. Sci. Tech. Bull. March 2022;11(1):41-51. doi:10.33714/masteb.1066936
Chicago Taheri, Arash. “On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour”. Marine Science and Technology Bulletin 11, no. 1 (March 2022): 41-51. https://doi.org/10.33714/masteb.1066936.
EndNote Taheri A (March 1, 2022) On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour. Marine Science and Technology Bulletin 11 1 41–51.
IEEE A. Taheri, “On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour”, Mar. Sci. Tech. Bull., vol. 11, no. 1, pp. 41–51, 2022, doi: 10.33714/masteb.1066936.
ISNAD Taheri, Arash. “On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour”. Marine Science and Technology Bulletin 11/1 (March 2022), 41-51. https://doi.org/10.33714/masteb.1066936.
JAMA Taheri A. On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour. Mar. Sci. Tech. Bull. 2022;11:41–51.
MLA Taheri, Arash. “On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour”. Marine Science and Technology Bulletin, vol. 11, no. 1, 2022, pp. 41-51, doi:10.33714/masteb.1066936.
Vancouver Taheri A. On the Hydrodynamic Effects of the Eidonomy of the Hammerhead Shark’s Cephalofoil in the Eye Bulb Region: Winglet-Like Behaviour. Mar. Sci. Tech. Bull. 2022;11(1):41-5.

27116