Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite

The Chemical Composition, Sensory Properties, and Myofibrillar Proteins of Surimi Produced From Tilapia (Oreochromis niloticus) Meat

Year 2023, Volume: 12 Issue: 3, 402 - 410, 28.09.2023
https://doi.org/10.33714/masteb.1337981

Abstract

Surimi, which is defined as the semi-processed minced meat of aquatic products that are discarded or have little fresh consumption, is usually offered for consumption by being made similar to valuable aquatic products such as shrimp, lobster tail, crab legs, and scallops. In this study, the chemical composition, myofibrillar proteins, and sensory properties of surimi manufactured from tilapia (Oreochromis niloticus) meat were investigated. Four study groups were created with different spice additives: red pepper, dill, thyme, and control (additive-free). Chemical composition analysis results of surimi were determined as total protein 12.85%, lipid 0.53%, ash 0.36%, moisture 86.59%, and myofibrillar protein 11.93%. Moreover, all groups were offered panelists to perform sensory analysis. At the end of the sensory evaluation, the groups received between 5.5 and 8.8 points on a 10-point scale from panelists regarding appearance, odor, chewiness, juiciness, taste and flavor, and overall acceptance. There were no differences between experimental groups in terms of appearance, odor, chewiness, and juiciness. However, statistical differences were observed between groups for taste and flavor as well as overall acceptance (p<0.05).

Thanks

This article was part of MSc Thesis of Güneş Buyruk.

References

  • Alvarez, C., Couso, I., & Tejada, M. (1995). Sardine surimi gel as affected by salt concentration, blending, heat treatment and moisture. Journal of Food Science, 60(3), 622-626. https://doi.org/10.1111/j.1365-2621.1995.tb09842.x
  • AOAC. (1990). Official methods of analysis. Association of the Official Analytical Chemists (15th. Ed). Washington.
  • Barrera, A. M., Ramirez, J. A., Gonzalez-Cabriales, J. J., & Vazquez, M. (2002). Effect of pectins on the gelling properties of surimi from silver carp. Food Hydrocolloids, 16(5), 441-447. https://doi.org/10.1016/s0268-005x(01)00121-7
  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099
  • Buamard, N., Singh, A., Zhang, B., Hong, H., Singh, P., & Benjakul, S. (2023). Ethanolic extract of duea ching fruit: extraction, characterization and its effect on the properties and storage stability of sardine surimi gel. Foods, 12(8), 1635. https://doi.org/10.3390/foods12081635
  • Çaklı, Ş., & Duyar, H. A. (2001). Surimi teknolojisi. E.Ü. Su Ürünleri Dergisi, 18(1-2), 255-269.
  • Chen, J., Deng, T., Wang, C., Mi, H., Yi, S., Li, X., & Li, J. (2020). Effect of hydrocolloids on gel properties and protein secondary structure of silver carp surimi. Journal of the Science of Food and Agriculture, 100(5), 2252-2260. https://doi.org/10.1002/jsfa.10254
  • Choi, Y. J., & Park, J. W. (2002). Acid-aided protein recovery from enzyme-rich pacific whiting. Journal of Food Science, 67(8), 2962–2967. https://doi.org/10.1111/j.1365-2621.2002.tb08846.x
  • Duangmal, K., & Taluengphol, A. (2010). Effect of protein additives, sodium ascorbate, and microbial transglutaminase on the texture and colour of red tilapia surimi gel. International Journal of Food Science & Technology, 45(1), 48-55. https://doi.org/10.1111/j.1365-2621.2009.02102.x
  • Durazzo, A., Di Lena, G., Gabrielli, P., Santini, A., Lombardi-Boccia, G., & Lucarini, M. (2022). Nutrients and bioactive compounds in seafood: quantitative literature research analysis. Fishes, 7(3), 132. https://doi.org/10.3390/fishes7030132
  • Dyer, W. J., Fench, H. V., & Snow, J. M. (1950). Proteins in fish muscle. I. Extraction of protein fraction in fresh fish. Journal of the Fisheries Research Board of Canada, 7(10), 585. https://doi.org/10.1139/f47-052
  • Fang, Q., Shi, L., Ren, Z., Hao, G., Chen, J., & Weng, W. (2021). Effects of emulsified lard and TGase on gel properties of threadfin bream (Nemipterus virgatus) surimi. LWT, 146, 111513. https://doi.org/10.1016/j.lwt.2021.111513
  • Frazier, W. C., & Westhoff D. C. (1978). Food microbiology. 3rd Edition. Hill Publishing Co.
  • Gomez-Guillén, C., & Montero, P. (1996). Addition of hydrocolloids and nonmuscle proteins to sardine (Sardine pilchardus) mince gels effect of salt concentration. Food Chemistry, 56(4), 421-427. https://doi.org/10.1016/0308-8146(95)00211-1
  • Gomez-Guillén, C., Solas, T., & Montero, P. (1997). Influence of added salt and non-muscle proteins on the rheology and ultrastructure of gels made from minced flesh of sardine (Sardine pilchardus). Food Chemistry, 58(3), 193-202. https://doi.org/10.1016/s0308-8146(96)00092-1
  • Gülyavuz, H., & Tömek, S. (1991). Balık etinden sosis yapımı teknolojisi. Su Ürünleri Sempozyumu Bildiriler Kitabı, Türkiye. pp. 286-289.
  • Hleap, J. I., & Velasco, V. A. (2010). Análisis de las propiedades de textura durante el almacenamiento de salchichas elaboradas a partir de tilapia roja (Oreochromis sp.). Biotecnología en el Sector Agropecuario y Agroindustrial, 8(2), 46-56. https://doi.org/10.18684/bsaa.v19.n2.2021.1425
  • Hosomi, R., Yoshida, M., & Fukunaga, K. (2012). Seafood consumption and components for health. Global Journal of Health Science, 4(3), 72-86. https://doi.org/10.5539/gjhs.v4n3p72
  • Hosseini-Shekarabi, S. P., Hosseini, S. E., Soltani, M., Kamali, A., & Valinassab, T. (2018). A comparative study on physicochemical and sensory characteristics of minced fish and surimi from black mouth croaker (Atrobucca nibe). Journal of Agricultural Science and Technology, 16, 1289-1300.
  • Huda, N., Abdullah, A., & Babji, A. S. (2001a). Functional properties of surimi powder from three Malaysian marine fish. International Journal of Food Science & Technology, 36(4), 401-406. https://doi.org/10.1046/j.1365-2621.2001.00473.x
  • Huda, N., Abdullah, A., & Babji, A. S. (2001b). Physicochemical properties of Malaysian fish balls. Fishery Technology, 38(1), 14-17.
  • Jaziri, A. A., Shapawi, R., Mokhtar, R. A. M., Noordin, W. N. M., & Huda, N. (2021). Chemical composition of lizardfish surimi by-product: Focus on macro and micro-minerals contents. Current Research in Nutrition and Food Science Journal, 9(1), 52-61. https://doi.org/10.12944/crnfsj.9.1.06
  • Klesk, K., Yongsawatdigul, J., Park, J. W., Viratchakul, S., & Virulhakul, P. (2000). Gel forming ability of tropical tilapia surimi as compared with Alaska pollock and Pacific whiting surimi. J. Aquatic Food Product Technology, 9(3), 91-103. https://doi.org/10.1300/j030v09n03_07
  • Kobayashi, Y., & Park, J. W. (2017). Physicochemical characterizations of tilapia fish protein isolate under two distinctively different comminution conditions. Journal of Food Processing and Preservation, 41(6), e13233. https://doi.org/10.1111/jfpp.13233
  • Kong, C. S., Ogewa, H., & Iso, N. (1999). Temparature dependency of compression properties of fish-meat gel as affected by added starch. Journal of Food Science, 64(6), 1048-11052. https://doi.org/10.1111/j.1365-2621.1999.tb12279.x
  • Kyaw, Z. Y., Yu, S. Y., Cheow, C. S., Dzulkifly, M. H., & Howell, N. K. (2001). Effect of fish to starch ration on viscoelastic properties and microstructure of fish cracker (Keropok) dough. International Journal of Food Science & Technology, 36(7), 741-747. https://doi.org/10.1111/j.1365-2621.2001.00481.x
  • Lee, C. M. (1984). Surimi process technology, Food Technology, 38(11), 69-80.
  • Lee, H. G. & Park, J. W. (1998). Calcium compounds to improve gel functionality of Pacific whiting and Alaska pollock surimi. Journal of Food Science, 53, 969-974. https://doi.org/10.1111/j.1365-2621.1998.tb15835.x
  • Lou, S., Chen, H., Hsu, Y., & Chang, H. (2005). Changes in purine content of tilapia surimi products during processing. Fisheries Science, 71, 889-895. https://doi.org/10.1111/j.1444-2906.2005.01042.x
  • Luo, Y., Shen, H., Pan, D., & Bu, G. (2008). Gel properties of surimi from silver carp (Hypophthalmichthys molitrix) as affected by heat treatment and soy protein isolate. Food Hydrocolloids, 22(8), 1513-1519. https://doi.org/10.1016/j.foodhyd.2007.10.003
  • Matsumoto, J. J. (1978). Minced fish technology and its potential for developing countries. Fish Utilization Technology and Marketing, 18, 267-271.
  • Monto, A. R., Li, M., Wang, X., Wijaya, G. Y. A., Shi, T., Xiong, Z., Yuan, L., Wengang, J., Jianrong, L., & Gao, R. (2022). Recent developments in maintaining gel properties of surimi products under reduced salt conditions and use of additives. Critical Reviews in Food Science and Nutrition, 62(30), 8518-8533. https://doi.org/10.1080/10408398.2021.1931024
  • Moosavi‐Nasab, M., Asgari, F., & Oliyaei, N. (2019). Quality evaluation of surimi and fish nuggets from Queen fish (Scomberoides commersonnianus). Food Science & Nutrition, 7(10), 3206-3215. https://doi.org/10.1002/fsn3.1172
  • Nowsad, A. A., Chanda, S. C., Kanoh, S., & Niwa, E. (2000). Gel forming ability and other properties of eleven underutilized tropical marine fish species. J. Aquatic Food Product Technology, 9(3), 71-89. https://doi.org/10.1300/j030v09n03_06
  • Oh, J. Y., Kim, E. A., Lee, H., Kim, H. S., Lee, J. S., & Jeon, Y. J. (2019). Antihypertensive effect of surimi prepared from olive flounder (Paralichthys olivaceus) by angiotensin-I converting enzyme (ACE) inhibitory activity and characterization of ACE inhibitory peptides. Process Biochemistry, 80, 164-170. https://doi.org/10.1016/j.procbio.2019.01.016
  • Oujifard, A., Benjakul, S., Ahmad, M., & Seyfabadi, J. (2012). Effect of Bambara groundnut protein isolate on autolysis and gel properties of surimi from threadfin bream (Nemipterus bleekeri). LWT, 47(2), 261-266. https://doi.org/10.1016/j.lwt.2012.01.016
  • Panpipat, W., Chaijan, M., & Benjakul, S. (2010). Gel properties of croaker–mackerel surimi blend. Food Chemistry, 122(4), 1122-1128. https://doi.org/10.1016/j.foodchem.2010.03.096
  • Pei, Z., Wang, H., Xia, G., Hu, Y., Xue, C., Lu, S., Chuan, L., & Shen, X. (2023). Emulsion gel stabilized by tilapia myofibrillar protein: Application in lipid-enhanced surimi preparation. Food Chemistry, 403, 134424. https://doi.org/10.1016/j.foodchem.2022.134424
  • Priyadarshini, M. B., Xavier, K. M., Dhanabalan, V., Nayak, B. B., & Balange, A. K. (2021). Development of ready-to-cook shrimp analogue from surimi: Effect of natural plant extracts on the chemical quality during refrigerated storage. LWT, 135, 110239. https://doi.org/10.1016/j.lwt.2020.110239
  • Ramirez-Suarez, J. C., Pacheco-Aguilar, R., & Mazorra-Manzano, M. A. (2000). Washing effects on gelling properties and color of Monterey sardine (Sardinops sagax caerulea) minced flesh. J. Aquatic Food Product Technology, 9(2), 55-67. https://doi.org/10.1300/j030v10n02_08
  • Rohani, A. C., Indon, A., & Yunus, J. M. (1995). Processing of surimi from freshwater fish-tilapia. MARDI Research Journal, 23, 183-190.
  • Singh, A., Benjakul, S., & Prodpran, T. (2019). Effect of chitooligosaccharide from squid pen on gel properties of sardine surimi gel and its stability during refrigerated storage. International Journal of Food Science & Technology, 54(10), 2831-2838. https://doi.org/10.1111/ijfs.14199
  • Snow, J. M. (1950). Proteins in fish muscle. II. Colorimetric estimation of fish muscle protein. Canadian Journal of Fisheries and Aquatic Sciences, 7(10), 1950. https://doi.org/10.1139/f47-053
  • Yi, S., Li, Q., Qiao, C., Zhang, C., Wang, W., Xu, Y., & Li, J. (2020). Myofibrillar protein conformation enhance gel properties of mixed surimi gels with Nemipterus virgatus and Hypophthalmichthys molitrix. Food Hydrocolloids, 106, 105924. https://doi.org/10.1016/j.foodhyd.2020.105924
  • Yongsawatdigul, J., Park, J. W., Virulhakul, P., & Viratchakul, S. (2000). Proteplytic degradation of tropical tilapia surimi. Journal of Food Science, 65(1), 129-133. https://doi.org/10.1111/j.1365-2621.2000.tb15967.x
  • Yongsawatdigul, J., Park, J.W., & Koble, E. (1997). Degradation kinetics of miyozin heavy chain of pacific whiting surimi. Journal of Food Science, 62(4), 724-728. https://doi.org/10.1111/j.1365-2621.1997.tb15444.x
  • Zhou, X., Jiang, S., Zhao, D., Zhang, J., Gu, S., Pan, Z., & Ding, Y. (2017). Changes in physicochemical properties and protein structure of surimi enhanced with camellia tea oil. LWT, 84, 562-571. https://doi.org/10.1016/j.lwt.2017.03.026
Year 2023, Volume: 12 Issue: 3, 402 - 410, 28.09.2023
https://doi.org/10.33714/masteb.1337981

Abstract

References

  • Alvarez, C., Couso, I., & Tejada, M. (1995). Sardine surimi gel as affected by salt concentration, blending, heat treatment and moisture. Journal of Food Science, 60(3), 622-626. https://doi.org/10.1111/j.1365-2621.1995.tb09842.x
  • AOAC. (1990). Official methods of analysis. Association of the Official Analytical Chemists (15th. Ed). Washington.
  • Barrera, A. M., Ramirez, J. A., Gonzalez-Cabriales, J. J., & Vazquez, M. (2002). Effect of pectins on the gelling properties of surimi from silver carp. Food Hydrocolloids, 16(5), 441-447. https://doi.org/10.1016/s0268-005x(01)00121-7
  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099
  • Buamard, N., Singh, A., Zhang, B., Hong, H., Singh, P., & Benjakul, S. (2023). Ethanolic extract of duea ching fruit: extraction, characterization and its effect on the properties and storage stability of sardine surimi gel. Foods, 12(8), 1635. https://doi.org/10.3390/foods12081635
  • Çaklı, Ş., & Duyar, H. A. (2001). Surimi teknolojisi. E.Ü. Su Ürünleri Dergisi, 18(1-2), 255-269.
  • Chen, J., Deng, T., Wang, C., Mi, H., Yi, S., Li, X., & Li, J. (2020). Effect of hydrocolloids on gel properties and protein secondary structure of silver carp surimi. Journal of the Science of Food and Agriculture, 100(5), 2252-2260. https://doi.org/10.1002/jsfa.10254
  • Choi, Y. J., & Park, J. W. (2002). Acid-aided protein recovery from enzyme-rich pacific whiting. Journal of Food Science, 67(8), 2962–2967. https://doi.org/10.1111/j.1365-2621.2002.tb08846.x
  • Duangmal, K., & Taluengphol, A. (2010). Effect of protein additives, sodium ascorbate, and microbial transglutaminase on the texture and colour of red tilapia surimi gel. International Journal of Food Science & Technology, 45(1), 48-55. https://doi.org/10.1111/j.1365-2621.2009.02102.x
  • Durazzo, A., Di Lena, G., Gabrielli, P., Santini, A., Lombardi-Boccia, G., & Lucarini, M. (2022). Nutrients and bioactive compounds in seafood: quantitative literature research analysis. Fishes, 7(3), 132. https://doi.org/10.3390/fishes7030132
  • Dyer, W. J., Fench, H. V., & Snow, J. M. (1950). Proteins in fish muscle. I. Extraction of protein fraction in fresh fish. Journal of the Fisheries Research Board of Canada, 7(10), 585. https://doi.org/10.1139/f47-052
  • Fang, Q., Shi, L., Ren, Z., Hao, G., Chen, J., & Weng, W. (2021). Effects of emulsified lard and TGase on gel properties of threadfin bream (Nemipterus virgatus) surimi. LWT, 146, 111513. https://doi.org/10.1016/j.lwt.2021.111513
  • Frazier, W. C., & Westhoff D. C. (1978). Food microbiology. 3rd Edition. Hill Publishing Co.
  • Gomez-Guillén, C., & Montero, P. (1996). Addition of hydrocolloids and nonmuscle proteins to sardine (Sardine pilchardus) mince gels effect of salt concentration. Food Chemistry, 56(4), 421-427. https://doi.org/10.1016/0308-8146(95)00211-1
  • Gomez-Guillén, C., Solas, T., & Montero, P. (1997). Influence of added salt and non-muscle proteins on the rheology and ultrastructure of gels made from minced flesh of sardine (Sardine pilchardus). Food Chemistry, 58(3), 193-202. https://doi.org/10.1016/s0308-8146(96)00092-1
  • Gülyavuz, H., & Tömek, S. (1991). Balık etinden sosis yapımı teknolojisi. Su Ürünleri Sempozyumu Bildiriler Kitabı, Türkiye. pp. 286-289.
  • Hleap, J. I., & Velasco, V. A. (2010). Análisis de las propiedades de textura durante el almacenamiento de salchichas elaboradas a partir de tilapia roja (Oreochromis sp.). Biotecnología en el Sector Agropecuario y Agroindustrial, 8(2), 46-56. https://doi.org/10.18684/bsaa.v19.n2.2021.1425
  • Hosomi, R., Yoshida, M., & Fukunaga, K. (2012). Seafood consumption and components for health. Global Journal of Health Science, 4(3), 72-86. https://doi.org/10.5539/gjhs.v4n3p72
  • Hosseini-Shekarabi, S. P., Hosseini, S. E., Soltani, M., Kamali, A., & Valinassab, T. (2018). A comparative study on physicochemical and sensory characteristics of minced fish and surimi from black mouth croaker (Atrobucca nibe). Journal of Agricultural Science and Technology, 16, 1289-1300.
  • Huda, N., Abdullah, A., & Babji, A. S. (2001a). Functional properties of surimi powder from three Malaysian marine fish. International Journal of Food Science & Technology, 36(4), 401-406. https://doi.org/10.1046/j.1365-2621.2001.00473.x
  • Huda, N., Abdullah, A., & Babji, A. S. (2001b). Physicochemical properties of Malaysian fish balls. Fishery Technology, 38(1), 14-17.
  • Jaziri, A. A., Shapawi, R., Mokhtar, R. A. M., Noordin, W. N. M., & Huda, N. (2021). Chemical composition of lizardfish surimi by-product: Focus on macro and micro-minerals contents. Current Research in Nutrition and Food Science Journal, 9(1), 52-61. https://doi.org/10.12944/crnfsj.9.1.06
  • Klesk, K., Yongsawatdigul, J., Park, J. W., Viratchakul, S., & Virulhakul, P. (2000). Gel forming ability of tropical tilapia surimi as compared with Alaska pollock and Pacific whiting surimi. J. Aquatic Food Product Technology, 9(3), 91-103. https://doi.org/10.1300/j030v09n03_07
  • Kobayashi, Y., & Park, J. W. (2017). Physicochemical characterizations of tilapia fish protein isolate under two distinctively different comminution conditions. Journal of Food Processing and Preservation, 41(6), e13233. https://doi.org/10.1111/jfpp.13233
  • Kong, C. S., Ogewa, H., & Iso, N. (1999). Temparature dependency of compression properties of fish-meat gel as affected by added starch. Journal of Food Science, 64(6), 1048-11052. https://doi.org/10.1111/j.1365-2621.1999.tb12279.x
  • Kyaw, Z. Y., Yu, S. Y., Cheow, C. S., Dzulkifly, M. H., & Howell, N. K. (2001). Effect of fish to starch ration on viscoelastic properties and microstructure of fish cracker (Keropok) dough. International Journal of Food Science & Technology, 36(7), 741-747. https://doi.org/10.1111/j.1365-2621.2001.00481.x
  • Lee, C. M. (1984). Surimi process technology, Food Technology, 38(11), 69-80.
  • Lee, H. G. & Park, J. W. (1998). Calcium compounds to improve gel functionality of Pacific whiting and Alaska pollock surimi. Journal of Food Science, 53, 969-974. https://doi.org/10.1111/j.1365-2621.1998.tb15835.x
  • Lou, S., Chen, H., Hsu, Y., & Chang, H. (2005). Changes in purine content of tilapia surimi products during processing. Fisheries Science, 71, 889-895. https://doi.org/10.1111/j.1444-2906.2005.01042.x
  • Luo, Y., Shen, H., Pan, D., & Bu, G. (2008). Gel properties of surimi from silver carp (Hypophthalmichthys molitrix) as affected by heat treatment and soy protein isolate. Food Hydrocolloids, 22(8), 1513-1519. https://doi.org/10.1016/j.foodhyd.2007.10.003
  • Matsumoto, J. J. (1978). Minced fish technology and its potential for developing countries. Fish Utilization Technology and Marketing, 18, 267-271.
  • Monto, A. R., Li, M., Wang, X., Wijaya, G. Y. A., Shi, T., Xiong, Z., Yuan, L., Wengang, J., Jianrong, L., & Gao, R. (2022). Recent developments in maintaining gel properties of surimi products under reduced salt conditions and use of additives. Critical Reviews in Food Science and Nutrition, 62(30), 8518-8533. https://doi.org/10.1080/10408398.2021.1931024
  • Moosavi‐Nasab, M., Asgari, F., & Oliyaei, N. (2019). Quality evaluation of surimi and fish nuggets from Queen fish (Scomberoides commersonnianus). Food Science & Nutrition, 7(10), 3206-3215. https://doi.org/10.1002/fsn3.1172
  • Nowsad, A. A., Chanda, S. C., Kanoh, S., & Niwa, E. (2000). Gel forming ability and other properties of eleven underutilized tropical marine fish species. J. Aquatic Food Product Technology, 9(3), 71-89. https://doi.org/10.1300/j030v09n03_06
  • Oh, J. Y., Kim, E. A., Lee, H., Kim, H. S., Lee, J. S., & Jeon, Y. J. (2019). Antihypertensive effect of surimi prepared from olive flounder (Paralichthys olivaceus) by angiotensin-I converting enzyme (ACE) inhibitory activity and characterization of ACE inhibitory peptides. Process Biochemistry, 80, 164-170. https://doi.org/10.1016/j.procbio.2019.01.016
  • Oujifard, A., Benjakul, S., Ahmad, M., & Seyfabadi, J. (2012). Effect of Bambara groundnut protein isolate on autolysis and gel properties of surimi from threadfin bream (Nemipterus bleekeri). LWT, 47(2), 261-266. https://doi.org/10.1016/j.lwt.2012.01.016
  • Panpipat, W., Chaijan, M., & Benjakul, S. (2010). Gel properties of croaker–mackerel surimi blend. Food Chemistry, 122(4), 1122-1128. https://doi.org/10.1016/j.foodchem.2010.03.096
  • Pei, Z., Wang, H., Xia, G., Hu, Y., Xue, C., Lu, S., Chuan, L., & Shen, X. (2023). Emulsion gel stabilized by tilapia myofibrillar protein: Application in lipid-enhanced surimi preparation. Food Chemistry, 403, 134424. https://doi.org/10.1016/j.foodchem.2022.134424
  • Priyadarshini, M. B., Xavier, K. M., Dhanabalan, V., Nayak, B. B., & Balange, A. K. (2021). Development of ready-to-cook shrimp analogue from surimi: Effect of natural plant extracts on the chemical quality during refrigerated storage. LWT, 135, 110239. https://doi.org/10.1016/j.lwt.2020.110239
  • Ramirez-Suarez, J. C., Pacheco-Aguilar, R., & Mazorra-Manzano, M. A. (2000). Washing effects on gelling properties and color of Monterey sardine (Sardinops sagax caerulea) minced flesh. J. Aquatic Food Product Technology, 9(2), 55-67. https://doi.org/10.1300/j030v10n02_08
  • Rohani, A. C., Indon, A., & Yunus, J. M. (1995). Processing of surimi from freshwater fish-tilapia. MARDI Research Journal, 23, 183-190.
  • Singh, A., Benjakul, S., & Prodpran, T. (2019). Effect of chitooligosaccharide from squid pen on gel properties of sardine surimi gel and its stability during refrigerated storage. International Journal of Food Science & Technology, 54(10), 2831-2838. https://doi.org/10.1111/ijfs.14199
  • Snow, J. M. (1950). Proteins in fish muscle. II. Colorimetric estimation of fish muscle protein. Canadian Journal of Fisheries and Aquatic Sciences, 7(10), 1950. https://doi.org/10.1139/f47-053
  • Yi, S., Li, Q., Qiao, C., Zhang, C., Wang, W., Xu, Y., & Li, J. (2020). Myofibrillar protein conformation enhance gel properties of mixed surimi gels with Nemipterus virgatus and Hypophthalmichthys molitrix. Food Hydrocolloids, 106, 105924. https://doi.org/10.1016/j.foodhyd.2020.105924
  • Yongsawatdigul, J., Park, J. W., Virulhakul, P., & Viratchakul, S. (2000). Proteplytic degradation of tropical tilapia surimi. Journal of Food Science, 65(1), 129-133. https://doi.org/10.1111/j.1365-2621.2000.tb15967.x
  • Yongsawatdigul, J., Park, J.W., & Koble, E. (1997). Degradation kinetics of miyozin heavy chain of pacific whiting surimi. Journal of Food Science, 62(4), 724-728. https://doi.org/10.1111/j.1365-2621.1997.tb15444.x
  • Zhou, X., Jiang, S., Zhao, D., Zhang, J., Gu, S., Pan, Z., & Ding, Y. (2017). Changes in physicochemical properties and protein structure of surimi enhanced with camellia tea oil. LWT, 84, 562-571. https://doi.org/10.1016/j.lwt.2017.03.026
There are 47 citations in total.

Details

Primary Language English
Subjects Post-Harvest Fisheries Technologies (Incl. Transportation)
Journal Section Research Article
Authors

Güneş Buyruk 0009-0009-8852-2084

Mehmet Çelik 0000-0003-4330-2490

Aygül Küçükgülmez 0000-0001-5419-5921

Ali Eslem Kadak 0000-0002-7128-9134

Publication Date September 28, 2023
Submission Date August 4, 2023
Acceptance Date September 4, 2023
Published in Issue Year 2023 Volume: 12 Issue: 3

Cite

APA Buyruk, G., Çelik, M., Küçükgülmez, A., Kadak, A. E. (2023). The Chemical Composition, Sensory Properties, and Myofibrillar Proteins of Surimi Produced From Tilapia (Oreochromis niloticus) Meat. Marine Science and Technology Bulletin, 12(3), 402-410. https://doi.org/10.33714/masteb.1337981
AMA Buyruk G, Çelik M, Küçükgülmez A, Kadak AE. The Chemical Composition, Sensory Properties, and Myofibrillar Proteins of Surimi Produced From Tilapia (Oreochromis niloticus) Meat. Mar. Sci. Tech. Bull. September 2023;12(3):402-410. doi:10.33714/masteb.1337981
Chicago Buyruk, Güneş, Mehmet Çelik, Aygül Küçükgülmez, and Ali Eslem Kadak. “The Chemical Composition, Sensory Properties, and Myofibrillar Proteins of Surimi Produced From Tilapia (Oreochromis Niloticus) Meat”. Marine Science and Technology Bulletin 12, no. 3 (September 2023): 402-10. https://doi.org/10.33714/masteb.1337981.
EndNote Buyruk G, Çelik M, Küçükgülmez A, Kadak AE (September 1, 2023) The Chemical Composition, Sensory Properties, and Myofibrillar Proteins of Surimi Produced From Tilapia (Oreochromis niloticus) Meat. Marine Science and Technology Bulletin 12 3 402–410.
IEEE G. Buyruk, M. Çelik, A. Küçükgülmez, and A. E. Kadak, “The Chemical Composition, Sensory Properties, and Myofibrillar Proteins of Surimi Produced From Tilapia (Oreochromis niloticus) Meat”, Mar. Sci. Tech. Bull., vol. 12, no. 3, pp. 402–410, 2023, doi: 10.33714/masteb.1337981.
ISNAD Buyruk, Güneş et al. “The Chemical Composition, Sensory Properties, and Myofibrillar Proteins of Surimi Produced From Tilapia (Oreochromis Niloticus) Meat”. Marine Science and Technology Bulletin 12/3 (September 2023), 402-410. https://doi.org/10.33714/masteb.1337981.
JAMA Buyruk G, Çelik M, Küçükgülmez A, Kadak AE. The Chemical Composition, Sensory Properties, and Myofibrillar Proteins of Surimi Produced From Tilapia (Oreochromis niloticus) Meat. Mar. Sci. Tech. Bull. 2023;12:402–410.
MLA Buyruk, Güneş et al. “The Chemical Composition, Sensory Properties, and Myofibrillar Proteins of Surimi Produced From Tilapia (Oreochromis Niloticus) Meat”. Marine Science and Technology Bulletin, vol. 12, no. 3, 2023, pp. 402-10, doi:10.33714/masteb.1337981.
Vancouver Buyruk G, Çelik M, Küçükgülmez A, Kadak AE. The Chemical Composition, Sensory Properties, and Myofibrillar Proteins of Surimi Produced From Tilapia (Oreochromis niloticus) Meat. Mar. Sci. Tech. Bull. 2023;12(3):402-10.

27116