Research Article
BibTex RIS Cite

Year 2025, Volume: 14 Issue: 2, 94 - 102, 30.06.2025
https://doi.org/10.33714/masteb.1714701

Abstract

References

  • Campodoni, E., Montanari, M., Artusi, C., Bassi, G., Furlani, F., Montesi, M., Panseri, S., Sandri, M., & Tampieri, A. (2021). Calcium-based biomineralization: A smart approach for the design of novel multifunctional hybrid materials. Journal of Composites Science, 5(10), 278. https://doi.org/10.3390/jcs5100278
  • Chen, Y., Feng, Y., Deveaux, J. G., Masoud, M. A., Chandra, F. S., Chen, H., Zhang, D., & Feng, L. (2019). Biomineralization forming process and bio-inspired nanomaterials for biomedical application: A review. Minerals, 9(2), 68. https://doi.org/10.3390/min9020068
  • Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96, 141–162. https://doi.org/10.1016/j.earscirev.2008.10.005
  • Ehrlich, H., Bailey, E., Wysokowski, M., & Jesionowski, T. (2021). Forced biomineralization: A review. Biomimetics, 6(3), 46. https://doi.org/10.3390/biomimetics6030046
  • Figuerola, B., Hancock, A. M., Bax, N., Cummings, V. J., Downey, R., Griffiths, H. J., Smith, J., & Stark, J. S. (2021). A review and meta-analysis of potential impacts of ocean acidification on marine calcifiers from the Southern Ocean. Frontiers in Marine Science, 8, 584445. https://doi.org/10.3389/fmars.2021.584445
  • Gilbert, P. U. P. A., Bergmann, K. D., Boekelheide, N., Tambutté, S., Mass, T., Marin, F., Adkins, J. F., Erez, J., Gilbert, B., Knutson, V., Cantine, M., Ortega Hernández, J., & Knoll, A. H. (2022). Biomineralization: Integrating mechanism and evolutionary history. Science Advances, 8(10), eabl9653. https://doi.org/10.1126/sciadv.abl9653
  • Hamester, M. R. R., Balzer, P. S., & Becker, D. (2012). Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Material Research, 15(2), 204–208. https://doi.org/10.1590/S1516-14392012005000014
  • Hossain, M. S., & Ahmed, S. (2023). Crystallographic characterization of naturally occurring aragonite and calcite phase: Rietveld refinement. Journal of Saudi Chemical Society, 27(3), 101649. https://doi.org/10.1016/j.jscs.2023.101649
  • Iglikowska, A., Ronowicz, M., Humphreys-Williams, E., & Kukliński, P. (2018). Trace element accumulation in the shell of the Arctic cirriped Balanus balanus. Hydrobiologia, 818, 43–56. https://doi.org/10.1007/s10750-018-3564-5
  • Ituen, E. U. (2015). Mechanical and chemical properties of selected mullusc shells in Nigeria. International Journal of Agricultural Policy and Research, 3(1), 53–59. https://doi.org/10.15739/IJAPR.026
  • Kızılkaya, B., Yıldız, H., & Vural, P. (2024). Shell composition analysis of European flat oyster (Ostrea edulis, Linnaeus 1758) from Marmara Sea, Türkiye: Insights into chemical properties. Marine Science and Technology Bulletin, 13(2), 142-150. https://doi.org/10.33714/masteb.1493896
  • Louis, V., Besseau, L., & Lartaud, F. (2022). Step in time: biomineralisation of Bivalve’s shell. Frontiers in Marine Science, 9, 906085. https://doi.org/10.3389/fmars.2022.906085
  • Marin, F., Luquet, G., Marie, B. & Medakovic, D. (2007). Molluscan shell proteins: Primary structure, origin, and evolution. Current Topics in Developmental Biology, 80, 209–276. https://doi.org/10.1016/S0070-2153(07)80006-8
  • McCauley, J. W. (1981). Calcite group. In Mineralogy. Encyclopedia of Earth Science. Springer. https://doi.org/10.1007/0-387-30720-6_20
  • Mititelu, M., Stanciu, G., Drăgănescu, D., Ioniță, A. C., Neacșu, S. M., Dinu, M., Stefan-van Staden, R. I., & Moroșan, E. (2022). Mussel shells, a valuable calcium resource for the pharmaceutical industry. Marine Drugs, 20(1), 25. https://doi.org/10.3390/md20010025
  • Muhammad Mailafiya, M., Abubakar, K., Danmaigoro, A., Musa Chiroma, S., Bin Abdul Rahim, E., Aris Mohd Moklas, M., & Abu Bakar Zakaria, Z. (2019). Cockle shell-derived calcium carbonate (Aragonite) nanoparticles: A dynamite to nanomedicine. Applied Sciences, 9(14), 2897. https://doi.org/10.3390/app9142897
  • Murdock, D. J. E. (2020). The ‘Biomineralization Toolkit’ and the origin of animal skeletons. Biological Reviews, 95, 1372–1392. https://doi.org/10.1111/brv.12614
  • Qin, K., Zheng, Z., Wang, J., Pan, H., & Tang, R. (2024). Biomineralization strategy: From material manufacturing to biological regulation. Giant, 19, 100317. https://doi.org/10.1016/j.giant.2024.100317
  • Reddy, M. S. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4, 314. https://doi.org/10.3389/fmicb.2013.00314
  • Skinner, H. C. & Jahren, A. H. (2003). Biomineralization. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry: Volume 8: Biogeochemistry (pp. 117–184). Elsevier Science. https://doi.org/10.1016/B0-08-043751-6/08128-7
  • Weiner, S. & Dove, P. M. (2003). An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry, 54(1), 1-29. https://doi.org/10.2113/0540001

Hidden engineering in molecular silence: Examination of biomineralization structure in the shell of Magallana gigas (Thunberg, 1793) species using X-ray diffraction (XRD)

Year 2025, Volume: 14 Issue: 2, 94 - 102, 30.06.2025
https://doi.org/10.33714/masteb.1714701

Abstract

This study was conducted using X-ray diffraction (XRD) analysis to determine the mineralogical composition of the shell structure of Magallana gigas (Pacific oyster). The analyses revealed that the shell is predominantly composed of calcium carbonate (CaCO3), with the structure predominantly found in the crystalline calcite phase. XRD patterns were thoroughly evaluated in the 20°–80° 2θ range, and high-intensity diffraction peaks specific to the calcite phase were detected, particularly in the 40°–49° and 60°–78° regions. Signals related to the aragonite phase were limited and of low intensity. The biomineralization process plays a central role in organisms’ adaptation to environmental factors and structural protection. Marine mollusks like M. gigas provide physical protection and gain resilience to chemical variability in their habitats through biomineralization mechanisms that govern shell formation. The dominance of calcite in the shells is demonstrated comprehensively by our XRD data, as the preferential formation of the calcite phase in this species’ shell structure is favored for its advantages in long-term environmental stability and biological energy efficiency. Additionally, the obtained data make significant contributions to understanding the biochemical and environmental interactions involved in shell formation in marine organisms. In this regard, the study makes significant contributions for future research on the formation, function, and ecological importance of biogenic minerals.

Thanks

We would like to thank the central laboratory staff for this study.

References

  • Campodoni, E., Montanari, M., Artusi, C., Bassi, G., Furlani, F., Montesi, M., Panseri, S., Sandri, M., & Tampieri, A. (2021). Calcium-based biomineralization: A smart approach for the design of novel multifunctional hybrid materials. Journal of Composites Science, 5(10), 278. https://doi.org/10.3390/jcs5100278
  • Chen, Y., Feng, Y., Deveaux, J. G., Masoud, M. A., Chandra, F. S., Chen, H., Zhang, D., & Feng, L. (2019). Biomineralization forming process and bio-inspired nanomaterials for biomedical application: A review. Minerals, 9(2), 68. https://doi.org/10.3390/min9020068
  • Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96, 141–162. https://doi.org/10.1016/j.earscirev.2008.10.005
  • Ehrlich, H., Bailey, E., Wysokowski, M., & Jesionowski, T. (2021). Forced biomineralization: A review. Biomimetics, 6(3), 46. https://doi.org/10.3390/biomimetics6030046
  • Figuerola, B., Hancock, A. M., Bax, N., Cummings, V. J., Downey, R., Griffiths, H. J., Smith, J., & Stark, J. S. (2021). A review and meta-analysis of potential impacts of ocean acidification on marine calcifiers from the Southern Ocean. Frontiers in Marine Science, 8, 584445. https://doi.org/10.3389/fmars.2021.584445
  • Gilbert, P. U. P. A., Bergmann, K. D., Boekelheide, N., Tambutté, S., Mass, T., Marin, F., Adkins, J. F., Erez, J., Gilbert, B., Knutson, V., Cantine, M., Ortega Hernández, J., & Knoll, A. H. (2022). Biomineralization: Integrating mechanism and evolutionary history. Science Advances, 8(10), eabl9653. https://doi.org/10.1126/sciadv.abl9653
  • Hamester, M. R. R., Balzer, P. S., & Becker, D. (2012). Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Material Research, 15(2), 204–208. https://doi.org/10.1590/S1516-14392012005000014
  • Hossain, M. S., & Ahmed, S. (2023). Crystallographic characterization of naturally occurring aragonite and calcite phase: Rietveld refinement. Journal of Saudi Chemical Society, 27(3), 101649. https://doi.org/10.1016/j.jscs.2023.101649
  • Iglikowska, A., Ronowicz, M., Humphreys-Williams, E., & Kukliński, P. (2018). Trace element accumulation in the shell of the Arctic cirriped Balanus balanus. Hydrobiologia, 818, 43–56. https://doi.org/10.1007/s10750-018-3564-5
  • Ituen, E. U. (2015). Mechanical and chemical properties of selected mullusc shells in Nigeria. International Journal of Agricultural Policy and Research, 3(1), 53–59. https://doi.org/10.15739/IJAPR.026
  • Kızılkaya, B., Yıldız, H., & Vural, P. (2024). Shell composition analysis of European flat oyster (Ostrea edulis, Linnaeus 1758) from Marmara Sea, Türkiye: Insights into chemical properties. Marine Science and Technology Bulletin, 13(2), 142-150. https://doi.org/10.33714/masteb.1493896
  • Louis, V., Besseau, L., & Lartaud, F. (2022). Step in time: biomineralisation of Bivalve’s shell. Frontiers in Marine Science, 9, 906085. https://doi.org/10.3389/fmars.2022.906085
  • Marin, F., Luquet, G., Marie, B. & Medakovic, D. (2007). Molluscan shell proteins: Primary structure, origin, and evolution. Current Topics in Developmental Biology, 80, 209–276. https://doi.org/10.1016/S0070-2153(07)80006-8
  • McCauley, J. W. (1981). Calcite group. In Mineralogy. Encyclopedia of Earth Science. Springer. https://doi.org/10.1007/0-387-30720-6_20
  • Mititelu, M., Stanciu, G., Drăgănescu, D., Ioniță, A. C., Neacșu, S. M., Dinu, M., Stefan-van Staden, R. I., & Moroșan, E. (2022). Mussel shells, a valuable calcium resource for the pharmaceutical industry. Marine Drugs, 20(1), 25. https://doi.org/10.3390/md20010025
  • Muhammad Mailafiya, M., Abubakar, K., Danmaigoro, A., Musa Chiroma, S., Bin Abdul Rahim, E., Aris Mohd Moklas, M., & Abu Bakar Zakaria, Z. (2019). Cockle shell-derived calcium carbonate (Aragonite) nanoparticles: A dynamite to nanomedicine. Applied Sciences, 9(14), 2897. https://doi.org/10.3390/app9142897
  • Murdock, D. J. E. (2020). The ‘Biomineralization Toolkit’ and the origin of animal skeletons. Biological Reviews, 95, 1372–1392. https://doi.org/10.1111/brv.12614
  • Qin, K., Zheng, Z., Wang, J., Pan, H., & Tang, R. (2024). Biomineralization strategy: From material manufacturing to biological regulation. Giant, 19, 100317. https://doi.org/10.1016/j.giant.2024.100317
  • Reddy, M. S. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4, 314. https://doi.org/10.3389/fmicb.2013.00314
  • Skinner, H. C. & Jahren, A. H. (2003). Biomineralization. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry: Volume 8: Biogeochemistry (pp. 117–184). Elsevier Science. https://doi.org/10.1016/B0-08-043751-6/08128-7
  • Weiner, S. & Dove, P. M. (2003). An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry, 54(1), 1-29. https://doi.org/10.2113/0540001
There are 21 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Article
Authors

Harun Yıldız 0000-0002-8229-6903

Dilek Şenol Bahçeci 0000-0001-7854-0419

Bayram Kızılkaya 0000-0002-3916-3734

Publication Date June 30, 2025
Submission Date June 4, 2025
Acceptance Date June 24, 2025
Published in Issue Year 2025 Volume: 14 Issue: 2

Cite

APA Yıldız, H., Şenol Bahçeci, D., & Kızılkaya, B. (2025). Hidden engineering in molecular silence: Examination of biomineralization structure in the shell of Magallana gigas (Thunberg, 1793) species using X-ray diffraction (XRD). Marine Science and Technology Bulletin, 14(2), 94-102. https://doi.org/10.33714/masteb.1714701
AMA Yıldız H, Şenol Bahçeci D, Kızılkaya B. Hidden engineering in molecular silence: Examination of biomineralization structure in the shell of Magallana gigas (Thunberg, 1793) species using X-ray diffraction (XRD). Mar. Sci. Tech. Bull. June 2025;14(2):94-102. doi:10.33714/masteb.1714701
Chicago Yıldız, Harun, Dilek Şenol Bahçeci, and Bayram Kızılkaya. “Hidden Engineering in Molecular Silence: Examination of Biomineralization Structure in the Shell of Magallana Gigas (Thunberg, 1793) Species Using X-Ray Diffraction (XRD)”. Marine Science and Technology Bulletin 14, no. 2 (June 2025): 94-102. https://doi.org/10.33714/masteb.1714701.
EndNote Yıldız H, Şenol Bahçeci D, Kızılkaya B (June 1, 2025) Hidden engineering in molecular silence: Examination of biomineralization structure in the shell of Magallana gigas (Thunberg, 1793) species using X-ray diffraction (XRD). Marine Science and Technology Bulletin 14 2 94–102.
IEEE H. Yıldız, D. Şenol Bahçeci, and B. Kızılkaya, “Hidden engineering in molecular silence: Examination of biomineralization structure in the shell of Magallana gigas (Thunberg, 1793) species using X-ray diffraction (XRD)”, Mar. Sci. Tech. Bull., vol. 14, no. 2, pp. 94–102, 2025, doi: 10.33714/masteb.1714701.
ISNAD Yıldız, Harun et al. “Hidden Engineering in Molecular Silence: Examination of Biomineralization Structure in the Shell of Magallana Gigas (Thunberg, 1793) Species Using X-Ray Diffraction (XRD)”. Marine Science and Technology Bulletin 14/2 (June2025), 94-102. https://doi.org/10.33714/masteb.1714701.
JAMA Yıldız H, Şenol Bahçeci D, Kızılkaya B. Hidden engineering in molecular silence: Examination of biomineralization structure in the shell of Magallana gigas (Thunberg, 1793) species using X-ray diffraction (XRD). Mar. Sci. Tech. Bull. 2025;14:94–102.
MLA Yıldız, Harun et al. “Hidden Engineering in Molecular Silence: Examination of Biomineralization Structure in the Shell of Magallana Gigas (Thunberg, 1793) Species Using X-Ray Diffraction (XRD)”. Marine Science and Technology Bulletin, vol. 14, no. 2, 2025, pp. 94-102, doi:10.33714/masteb.1714701.
Vancouver Yıldız H, Şenol Bahçeci D, Kızılkaya B. Hidden engineering in molecular silence: Examination of biomineralization structure in the shell of Magallana gigas (Thunberg, 1793) species using X-ray diffraction (XRD). Mar. Sci. Tech. Bull. 2025;14(2):94-102.

27116