Research Article
BibTex RIS Cite

Functionalization of waste fish bone with gallic acid: Improving surface characteristics for advanced applications

Year 2025, Volume: 14 Issue: 3, 122 - 130, 30.09.2025
https://doi.org/10.33714/masteb.1738887

Abstract

In this study, hydroxyapatite (H) derived from fish bones was chemically modified with gallic acid (GA), and its surface properties were thoroughly investigated. The modification was achieved through an esterification reaction between the carboxyl groups of GA and the hydroxyl groups on the hydroxyapatite surface. Comprehensive characterization of the resulting gallic acid-modified hydroxyapatite (HA) samples revealed significant changes in surface chemistry and morphology. According to the analysis results, the point of zero charge (PZC) of the surface decreased from 7.25 to 6.78 after modification, indicating a shift toward a more acidic surface character. The BET (Brunauer-Emmett-Teller) analysis results showed that the surface of fish bone particles area increased from 5.650 m2/g to 15.789 m²/g. While the pore volume increased significantly, the decrease in average pore diameter indicated a more advanced structure with higher surface activity. The zeta potential decreased from –20.40 to –10.00 mV, while surface conductivity showed a significant increase. The increase in carbon content from 14.174% to 15.014% confirms the successful binding of gallic acid organic groups (containing seven carbon atoms per molecule) onto the surface. This study shows that fish bones, a natural waste material, can be converted into a functional material through a sustainable and environmentally friendly approach.

Ethical Statement

For this type of study, formal consent is not required.

Supporting Institution

This study was funded by TÜBİTAK, Project number: 213M200.

Project Number

213M200

Thanks

This study was funded by TÜBİTAK, Project number: 213M200.

References

  • Adetunji, A. I., Oberholster, P. J., & Erasmus, M. (2023). From garbage to treasure: A review on biorefinery of organic solid wastes into valuable biobased products. Bioresource Technology Reports, 24, 101610. https://doi.org/10.1016/j.biteb.2023.101610
  • Alaghemandi, M. (2024). Sustainable solutions through innovative plastic waste recycling technologies. Sustainability, 16(23), 10401. https://doi.org/10.3390/su162310401
  • Bayraklı, B., & Duyar, H. A. (2019). The effect of raw material freshness on fish oil quality produced in fish meal & oil plant. Journal of Anatolian Environmental and Animal Sciences, 4(3), 473–479. https://doi.org/10.35229/jaes.636002
  • Bayraklı, B. (2023). Utilization of fish by-products for sustainable aquaculture: nutritional analysis of fishmeal derived from the by-products of Oncorhynchus mykiss. Menba Journal of Fisheries Faculty, 9(2), 8–14. https://doi.org/10.58626/menba.1360875
  • Bayraklı, B., Özdemir, S., & Duyar, H. A. (2019). A study on fishing and fish meal-oil processing technology of anchovy (Engraulis encrasicolus) and European sprat (Sprattus sprattus) in the Black Sea. Menba Journal of Fisheries Faculty, 5(2), 9–16.
  • Bayraklı, B., Yiğit, M., Altuntaş, M., & Maita, M. (2024). Health risk assessment of metals via consumption of Rapa whelk (Rapana venosa) from the Black Sea. Journal of Agricultural Sciences, 30(3), 546–561. https://doi.org/10.15832/ankutbd.1374919
  • Chen, L., Yang, M., Chen, Z., Xie, Z., Huang, L., Osman, A. I., Farghali, M., Sandanayake, M., Liu, E., Ahn, Y. H., Al-Muhtaseb, A. H., Rooney, D. W., & Yap, P.-S. (2024). Conversion of waste into sustainable construction materials: A review of recent developments and prospects. Materials Today Sustainability, 27, 100930. https://doi.org/10.1016/j.mtsust.2024.100930
  • Dimović, S., Smičiklas, I., Plećaš, I., Antonović, D., & Mitrić, M. (2009). Comparative study of differently treated animal bones for Co2+ removal. Journal of Hazardous Materials, 164(1), 279–287. https://doi.org/10.1016/j.jhazmat.2008.08.013
  • Duyar, H. A., & Bayraklı, B. (2023). Fatty acid profiles of fish oil derived by different techniques from by-products of cultured Black Sea salmon, Oncorhynchus mykiss. Journal of Agricultural Sciences, 29(3), 833–841. https://doi.org/10.15832/ankutbd.1187017
  • Ezeorba, T. P. C., Okeke, E. S., Mayel, M. H., Nwuche, C. O., & Ezike, T. C. (2024). Recent advances in biotechnological valorization of agro-food wastes (AFW): Optimizing integrated approaches for sustainable biorefinery and circular bioeconomy. Bioresource Technology Reports, 26, 101823. https://doi.org/10.1016/j.biteb.2024.101823
  • Hajam, Y. A., Kumar, R., & Kumar, A. (2023). Environmental waste management strategies and vermi transformation for sustainable development. Environmental Challenges, 13, 100747. https://doi.org/10.1016/j.envc.2023.100747
  • Jung, H., Shin, G., Kwak, H., Tan Hao, L., Jegal, J., Kim, H. J., Jeon, H., Park, J., & Oh, D. X. (2023). Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste. Chemosphere, 320, 138089. https://doi.org/10.1016/j.chemosphere.2023.138089
  • Kızılkaya, B., & Tan, E. (2020). Investigation of the effect of lead adsorption on surface modified fish bones. Acta Natura et Scientia, 1(1), 56–60. https://doi.org/10.29329/actanatsci.2020.313.7
  • Kızılkaya, B., Ormancı, H. B., Öztekin, A., Tan, E., Ucyol, N., Türker, G., Tekinay, A. A., & Bilici, A. (2015). An application on fish bones by chemical modification of histidine as amino acid. Marine Science and Technology Bulletin, 4(1), 19–23.
  • Kizilkaya, B., Tan, E., Bahçeci, D., Ormanci, H. B., & Oztekin, A., (2018). An investigation on the conversion of functional materials of fish bones as waste products using surface modification methods. Indian Journal of Biotechnology, 17(1), 57-64.
  • Kizilkaya, B., Tekinay, A. A., & Dilgin, Y. (2010). Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones. Desalination, 264(1–2), 37–47. https://doi.org/10.1016/j.desal.2010.06.076
  • Liaqat, S., Ahmed, Z., Umer, M. U., Ali, Q., Mustafa, M. F., Ferheen, I., & Waseem, M. (2024). Sheep bone valorization: Enhancing gastronomic sustainability through hydroxyapatite-enriched potato wedges. International Journal of Gastronomy and Food Science, 35, 100841. https://doi.org/10.1016/j.ijgfs.2023.100841
  • Lingaitiene, O., & Burinskiene, A. (2024). Development of trade in recyclable raw materials: Transition to a circular economy. Economies, 12(2), 48. https://doi.org/10.3390/economies12020048
  • Minunno, R., O'Grady, T., Morrison, G. M., & Gruner, R. L. (2020). Exploring environmental benefits of reuse and recycle practices: A circular economy case study of a modular building. Resources, Conservation and Recycling, 160, 104855. https://doi.org/10.1016/j.resconrec.2020.104855
  • Mohammadi-Jam, S., Greenwood, R. W., & Waters, K. E. (2025). An overview of the temperature dependence of the zeta potential of aqueous suspensions. Results in Engineering, 27, 105698. https://doi.org/10.1016/j.rineng.2025.105698
  • Mondal, S., Park, S., Choi, J., Vu, T. T. H., Doan, V. H. M., Vo, T. T., Lee, B., & Oh, J. (2023). Hydroxyapatite: A journey from biomaterials to advanced functional materials. Advances in Colloid and Interface Science, 321, 103013. https://doi.org/10.1016/j.cis.2023.103013
  • Németh, Z., Csóka, I., Semnani Jazani, R., Sipos, B., Haspel, H., Kozma, G., Kónya, Z., & Dobó, D. G. (2022). Quality by design-driven zeta potential optimisation study of liposomes with charge imparting membrane additives. Pharmaceutics, 14(9), 1798. https://doi.org/10.3390/pharmaceutics14091798
  • Oliveira Neto, G. C. de, Correia, A. de J. C., & Schroeder, A. M. (2017). Economic and environmental assessment of recycling and reuse of electronic waste: Multiple case studies in Brazil and Switzerland. Resources, Conservation and Recycling, 127, 42–55. https://doi.org/10.1016/j.resconrec.2017.08.011
  • Qamhieh, K. (2024). Effect of dielectric constant on the zeta potential of spherical electric double layers. Molecules, 29(11), 2484. https://doi.org/10.3390/molecules29112484
  • Rosa, N., Moura, M. F. S. F., Olhero, S., Simoes, R., Magalhães, F. D., Marques, A. T., Ferreira, J. P. S., Reis, A. R., Carvalho, M., & Parente, M. (2022). Bone: An outstanding composite material. Applied Sciences, 12(7), 3381. https://doi.org/10.3390/app12073381
  • Serrano-Lotina, A., Portela, R., Baeza, P., Alcolea-Rodriguez, V., Villarroel, M., & Ávila, P. (2023). Zeta potential as a tool for functional materials development. Catalysis Today, 423, 113862. https://doi.org/10.1016/j.cattod.2022.08.004
  • Shi, H., Zhou, Z., Li, W., Fan, Y., Li, Z., & Wei, J. (2021). Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction. Crystals, 11(2), 149. https://doi.org/10.3390/cryst11020149
  • Siddiqua, A., Hahladakis, J. N., & Al-Attiya, W. A. K. A. (2022). An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environmental Science and Pollution Research, 29(43), 58514–58536. https://doi.org/10.1007/s11356-022-21578-z
  • Skwarek, E., Bolbukh, Y., Tertykh, V., et al. (2016). Electrokinetic properties of the pristine and oxidized MWCNT depending on the electrolyte type and concentration. Nanoscale Research Letters, 11, 166. https://doi.org/10.1186/s11671-016-1367-z
  • Šromová, V., Sobola, D., & Kaspar, P. (2023). A brief review of bone cell function and importance. Cells, 12(21), 2576. https://doi.org/10.3390/cells12212576
  • Suparmaniam, U., Shaik, N. B., Lam, M. K., Lim, J. W., Uemura, Y., Shuit, S. H., Show, P. L., Tan, I. S., & Lee, K. T. (2022). Valorization of fish bone waste as novel bioflocculant for rapid microalgae harvesting: Experimental evaluation and modelling using back propagation artificial neural network. Journal of Water Process Engineering, 47, 102808. https://doi.org/10.1016/j.jwpe.2022.102808
  • Tan, E., & Kızılkaya, B. (2021). Fuchsine dye adsorption of surface modified biogenic apatite with tryptophan and histidine. Acta Natura et Scientia, 2(1), 49–52. https://doi.org/10.29329/actanatsci.2021.314.8
  • Ulian, G., Moro, D., & Valdrè, G. (2021). Hydroxylapatite and related minerals in bone and dental tissues: Structural, spectroscopic and mechanical properties from a computational perspective. Biomolecules, 11(5), 728. https://doi.org/10.3390/biom11050728
  • Villarrubia-Gómez, P., Almroth, B. C., Eriksen, M., Ryberg, M., & Cornell, S. E. (2024). Plastics pollution exacerbates the impacts of all planetary boundaries. One Earth, 7(12), 2119–2138. https://doi.org/10.1016/j.oneear.2024.10.017
There are 34 citations in total.

Details

Primary Language English
Subjects Environmental Marine Biotechnology
Journal Section Research Article
Authors

Bayram Kızılkaya 0000-0002-3916-3734

Project Number 213M200
Publication Date September 30, 2025
Submission Date July 9, 2025
Acceptance Date August 20, 2025
Published in Issue Year 2025 Volume: 14 Issue: 3

Cite

APA Kızılkaya, B. (2025). Functionalization of waste fish bone with gallic acid: Improving surface characteristics for advanced applications. Marine Science and Technology Bulletin, 14(3), 122-130. https://doi.org/10.33714/masteb.1738887
AMA Kızılkaya B. Functionalization of waste fish bone with gallic acid: Improving surface characteristics for advanced applications. Mar. Sci. Tech. Bull. September 2025;14(3):122-130. doi:10.33714/masteb.1738887
Chicago Kızılkaya, Bayram. “Functionalization of Waste Fish Bone With Gallic Acid: Improving Surface Characteristics for Advanced Applications”. Marine Science and Technology Bulletin 14, no. 3 (September 2025): 122-30. https://doi.org/10.33714/masteb.1738887.
EndNote Kızılkaya B (September 1, 2025) Functionalization of waste fish bone with gallic acid: Improving surface characteristics for advanced applications. Marine Science and Technology Bulletin 14 3 122–130.
IEEE B. Kızılkaya, “Functionalization of waste fish bone with gallic acid: Improving surface characteristics for advanced applications”, Mar. Sci. Tech. Bull., vol. 14, no. 3, pp. 122–130, 2025, doi: 10.33714/masteb.1738887.
ISNAD Kızılkaya, Bayram. “Functionalization of Waste Fish Bone With Gallic Acid: Improving Surface Characteristics for Advanced Applications”. Marine Science and Technology Bulletin 14/3 (September2025), 122-130. https://doi.org/10.33714/masteb.1738887.
JAMA Kızılkaya B. Functionalization of waste fish bone with gallic acid: Improving surface characteristics for advanced applications. Mar. Sci. Tech. Bull. 2025;14:122–130.
MLA Kızılkaya, Bayram. “Functionalization of Waste Fish Bone With Gallic Acid: Improving Surface Characteristics for Advanced Applications”. Marine Science and Technology Bulletin, vol. 14, no. 3, 2025, pp. 122-30, doi:10.33714/masteb.1738887.
Vancouver Kızılkaya B. Functionalization of waste fish bone with gallic acid: Improving surface characteristics for advanced applications. Mar. Sci. Tech. Bull. 2025;14(3):122-30.

27116