Research Article
BibTex RIS Cite

Bir Uçak Braketinin Çok Kriterli Yaklaşımla Topoloji Optimizasyonu

Year 2025, Volume: 6 Issue: 3, 318 - 326, 30.12.2025
https://doi.org/10.52795/mateca.1811365

Abstract

Havacılık sektöründe hafiflik tasarımı uzun süredir yapısal verimliliğin merkezinde yer almaktadır. Ağırlığın azaltılması, yakıt tüketimini düşürmekte ve genel performansı artırmaktadır. Günümüzde metal eklemeli imalat sayesinde karmaşık geometrilere sahip hafif bileşenlerin üretimi mümkün hale gelmiştir. Ancak bu yöntemlerle üretilen parçaların titreşim davranışlarının da dikkatle değerlendirilmesi gerekmektedir. Özellikle motor bağlantı braketleri gibi dinamik yükler altındaki parçalar için doğal frekansın korunması veya artırılması kritik öneme sahiptir. Doğal frekansın artırılması rezonans riskini azaltarak yorulma ömrünü uzatmaktadır. Topoloji optimizasyonu bu bağlamda etkili bir tasarım yaklaşımı olarak öne çıkmaktadır. Bu yöntem, belirli kısıtlar altında malzeme dağılımını optimize ederek hem ağırlığı azaltmakta hem de dayanımı artırmaktadır. Ancak hacim azaltma amaçlı topolopji optimizasyonu genellikle doğal frekans değerlerinin azalmasıyla sonuçlanmaktadır. Bu çalışmada Ti-6Al-4V malzemesinden üretilen bir uçak motor braketinin SIMP yöntemiyle gerçekleştirilen topoloji optimizasyon süreci ve optimize edilen parçanın titreşim davranışı ele alınmıştır. Bu süreçte optimizasyon için ana hedef doğal frekansın korunması ve maksimasyonu iken bunun yanında dayanımın iyileştirilerek hacimsel/kütlesel hafifletmesi kriterleri de uygulanmıştır. Optimizasyon sonrasında elde edilen braketin statik ve modal analiz sonuçlarında optimized braketin baseline brakete göre hacimsel/kütlesel olarak %32,5 azalırken, von mises gerilim değerleri %12,2 oranında azalmıştır. Doğal frekansta ise optimized braketin ilk modu %5,11 artarken diğer modları %8-15 arasında artmıştır. Sonuçlar, tasarımın hem kütle azaltımı hem de dinamik performans açısından başarılı olduğunu göstermektedir. Topoloji optimizasyonu ve eklemeli imalat entegrasyonu, gelecekte havacılık yapılarında daha hafif ve dayanıklı bileşenlerin geliştirilmesi için büyük potansiyel taşımaktadır.

References

  • J.-H. Zhu, H. Zhou, C. Wang, L. Zhou, S.Q. Yuan, W.H. Zhang, A review of topology optimization for additive manufacturing: Status and challenges, Chin J Aeronaut 34 (1) (2021) 91–110. https://doi.org/10.1016/j.matpr.2018.06.286.
  • L. Meng, W. Zhang, D. Quan, G. Shi, L. Tang, Y. Hou, T. Gao, From topology optimization design to additive manufacturing: Today’s success and tomorrow’s roadmap, Arch Comput Methods Eng 27 (3) (2020) 805–830. https://doi.org/10.1007/s11831-019-09331-1.
  • M. Attaran, The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing, Business Horizons, 60 (2017) 677–688.
  • R. Brighenti, M.P. Cosma, L. Marsavina, A. Spagnoli, M. Terzano, Laser-based additively manufactured polymers: a review on processes and mechanical models, J Mater Sci 56 (2021) 961–998. https://doi.org/10.1007/s10853-020-05254-6.
  • M.P. Bendsøe, O. Sigmund, Topology Optimization—Theory, Methods, and Applications, Springer-Verlag, Berlin/Heidelberg, 2004.https://doi.org/10.1007/978-3-662-05086-6.
  • S. Saleh Alghamdi, S. John, N. Roy Choudhury, N.K. Dutta, Additive manufacturing of polymer materials: progress, promise and challenges, Polymers 13 (5) (2021) 753.
  • P.L.Y. Léonard, J.W. Nylander, Sustainability assessment of composites in aero-engine components, Proc Des Soc: DESIGN Conf, 1, 2020: pp. 1989–1998.
  • B. Gao, H. Yang, W. Chen, H. Wang, Topology optimization of the bracket structure in the acquisition, pointing, and tracking system considering displacement and key point stress constraints, Aerospace 11 (11) (2024) 939.https://doi.org/10.3390/aerospace11110939.
  • Y. Ma, Q. Shu, L. Tan, Y. Yue, C. Tian, Multi-objective topology optimization design for a certain launcher bracket, Innov Technol Adv 2 (2) 2024 46–58. https://doi.org/10.61187/ita.v2i2.118.
  • B.T. Warwick, C. Mechefske, I. Kim, Natural frequency-based topology optimization of an aircraft engine support frame, in: ASME Int Des Eng Tech Conf (IDETC/CIE 2020), St. Louis, USA, 2020: pp. 1–10. https://doi.org/10.1115/DETC2020-22286.
  • E. Gülbahçe, H.Ç. Sezgen, A. Çakan, Topology design and modal analysis of a bracket via FEA, Appl Eng Lett 4 (3) (2019) 102–105.
  • S. Kirthana, M.K. Nizamuddin, Finite element analysis and topology optimization of engine mounting bracket, Mater Today: Proc, 5 (9) (2018) 19277–19283. https://doi.org/10.18485/aeletters.2019.4.3.5.
  • F. Rutsch, M. Fina, S. Freitag, Structural topology optimization with simultaneous stress and displacement constraints considering multiple load cases, Struct Multidiscip Optim 68 (2025) Article 42.
  • M. Seabra, A. Araújo, L. Reis, E. Pinto, N. Alves, R. Santos, Selective laser melting and topology optimization for lighter aerospace brackets, Mater Des 131 (2017) 533–543. https://doi.org/10.1016/j.prostr.2016.02.039.
  • O. Abdulhameed, A. Al-Ahmari, W. Ameen, S.H. Mian, Additive manufacturing: Challenges, trends, and applications, Adv Mech Eng 11 (2) (2019) 1–27. https://doi.org/10.1177/1687814018822880.
  • 3D Systems & Frustum, Topology optimization and DMP combine to meet GE aircraft engine bracket challenge, Case Study, 2016. https://www.3dsystems.com.
  • L.S.R. Krishna, M. Natrajan, N. Sateesh, Topology optimization using solid isotropic material with penalization technique for additive manufacturing, Mater Today: Proc 4 (2) (2017) 1414–1422. https://doi.org/10.1016/j.matpr.2017.01.163
  • G. Kennedy, Y. Fu, Topology optimization with natural frequency constraints using a quadratic approximation of a spectral aggregate, in: AIAA SCITECH 2022 Forum, 2022. https://doi.org/10.2514/6.2022-2244
  • L. Berrocal, R. Fernández, S. González, A. Periñán, S. Tudela, J. Vilanova, F. Lasagni, Topology optimization and additive manufacturing for aerospace components, Prog Addit Manuf 4 (2) (2019) 83–95. https://doi.org/10.1007/s40964-018-0061-3.
  • O. Okorie, A. Perveen, D. Talamona, K. Kostas, Topology optimization of an aerospace bracket: Numerical and experimental investigation, Appl Sci 13 (24) (2023) 13218. https://doi.org/10.3390/app132413218.
  • O. Ibhadode, A. Adeoye, R. Uhunmwangho, I. Ezema, Topology optimization for metal additive manufacturing: Current trends, challenges, and outlook, Virtual Phys Prototyp, 18 (1) (2023) e2151192. https://doi.org/10.1080/17452759.2023.2181192.
  • D. White, B. Jones, T. Smith, J. Harris, Multiscale topology optimization using neural network surrogates for lattice structures, Struct Multidiscip Optim 59 (5) (2019) 1767–1782.
  • F. Jia, P. Gao, A. Mo, Consider the multi-objective topology optimization design of a space structure under complex working conditions, Mathematics 13 (13) (2025) 2133. https://doi.org/10.3390/math13132133.
  • T. Saraçyakupoğlu, Usage of additive manufacturing and topology optimization process for weight reduction studies in the aviation industry, Adv Sci Technol Eng Syst J 6 (2) (2021) 815–820. https://dx.doi.org/10.25046/aj060294.
  • GrabCAD Community, Alcoa Airplane Bearing Bracket Challenge, 2025. https://grabcad.com/challenges/airplane-bearing-bracket-challenge.

Topology Optimization of an Aircraft Bracket with a Multi-Criteria Approach

Year 2025, Volume: 6 Issue: 3, 318 - 326, 30.12.2025
https://doi.org/10.52795/mateca.1811365

Abstract

In the aviation industry, lightweight design has long been central to structural efficiency. Reducing weight reduces fuel consumption and increases overall performance. Metal additive manufacturing has made it possible to produce lightweight components with complex geometries. However, the vibration behavior of parts manufactured with these methods also requires careful consideration. Maintaining or increasing the natural frequency is critical, especially for parts under dynamic loads, such as engine mounting brackets. Increasing the natural frequency reduces the risk of resonance and extends fatigue life. Topology optimization stands out as an effective design approach in this context. This method reduces weight and increases strength by optimizing material distribution under certain constraints. This study examines the topology optimization process of an aircraft engine bracket manufactured from Ti-6Al-4V material, performed using the SIMP method, and the vibration behavior of the optimized part. The main optimization goal in this process was to maintain and maximize the natural frequency, while criteria for volumetric/mass reduction were also applied by improving strength. Static and modal analysis results of the bracket obtained after optimization revealed a 32.5% volumetric/mass reduction for the optimized bracket compared to the baseline bracket, while von Mises stress values decreased by 12.2%. At natural frequency, the first mode of the optimized bracket increased by 5.11%, while the other modes increased by 8-15%. The results demonstrate that the design is successful in terms of both mass reduction and dynamic performance. The integration of topology optimization and additive manufacturing holds great potential for the development of lighter and more durable components in future aerospace structures.

References

  • J.-H. Zhu, H. Zhou, C. Wang, L. Zhou, S.Q. Yuan, W.H. Zhang, A review of topology optimization for additive manufacturing: Status and challenges, Chin J Aeronaut 34 (1) (2021) 91–110. https://doi.org/10.1016/j.matpr.2018.06.286.
  • L. Meng, W. Zhang, D. Quan, G. Shi, L. Tang, Y. Hou, T. Gao, From topology optimization design to additive manufacturing: Today’s success and tomorrow’s roadmap, Arch Comput Methods Eng 27 (3) (2020) 805–830. https://doi.org/10.1007/s11831-019-09331-1.
  • M. Attaran, The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing, Business Horizons, 60 (2017) 677–688.
  • R. Brighenti, M.P. Cosma, L. Marsavina, A. Spagnoli, M. Terzano, Laser-based additively manufactured polymers: a review on processes and mechanical models, J Mater Sci 56 (2021) 961–998. https://doi.org/10.1007/s10853-020-05254-6.
  • M.P. Bendsøe, O. Sigmund, Topology Optimization—Theory, Methods, and Applications, Springer-Verlag, Berlin/Heidelberg, 2004.https://doi.org/10.1007/978-3-662-05086-6.
  • S. Saleh Alghamdi, S. John, N. Roy Choudhury, N.K. Dutta, Additive manufacturing of polymer materials: progress, promise and challenges, Polymers 13 (5) (2021) 753.
  • P.L.Y. Léonard, J.W. Nylander, Sustainability assessment of composites in aero-engine components, Proc Des Soc: DESIGN Conf, 1, 2020: pp. 1989–1998.
  • B. Gao, H. Yang, W. Chen, H. Wang, Topology optimization of the bracket structure in the acquisition, pointing, and tracking system considering displacement and key point stress constraints, Aerospace 11 (11) (2024) 939.https://doi.org/10.3390/aerospace11110939.
  • Y. Ma, Q. Shu, L. Tan, Y. Yue, C. Tian, Multi-objective topology optimization design for a certain launcher bracket, Innov Technol Adv 2 (2) 2024 46–58. https://doi.org/10.61187/ita.v2i2.118.
  • B.T. Warwick, C. Mechefske, I. Kim, Natural frequency-based topology optimization of an aircraft engine support frame, in: ASME Int Des Eng Tech Conf (IDETC/CIE 2020), St. Louis, USA, 2020: pp. 1–10. https://doi.org/10.1115/DETC2020-22286.
  • E. Gülbahçe, H.Ç. Sezgen, A. Çakan, Topology design and modal analysis of a bracket via FEA, Appl Eng Lett 4 (3) (2019) 102–105.
  • S. Kirthana, M.K. Nizamuddin, Finite element analysis and topology optimization of engine mounting bracket, Mater Today: Proc, 5 (9) (2018) 19277–19283. https://doi.org/10.18485/aeletters.2019.4.3.5.
  • F. Rutsch, M. Fina, S. Freitag, Structural topology optimization with simultaneous stress and displacement constraints considering multiple load cases, Struct Multidiscip Optim 68 (2025) Article 42.
  • M. Seabra, A. Araújo, L. Reis, E. Pinto, N. Alves, R. Santos, Selective laser melting and topology optimization for lighter aerospace brackets, Mater Des 131 (2017) 533–543. https://doi.org/10.1016/j.prostr.2016.02.039.
  • O. Abdulhameed, A. Al-Ahmari, W. Ameen, S.H. Mian, Additive manufacturing: Challenges, trends, and applications, Adv Mech Eng 11 (2) (2019) 1–27. https://doi.org/10.1177/1687814018822880.
  • 3D Systems & Frustum, Topology optimization and DMP combine to meet GE aircraft engine bracket challenge, Case Study, 2016. https://www.3dsystems.com.
  • L.S.R. Krishna, M. Natrajan, N. Sateesh, Topology optimization using solid isotropic material with penalization technique for additive manufacturing, Mater Today: Proc 4 (2) (2017) 1414–1422. https://doi.org/10.1016/j.matpr.2017.01.163
  • G. Kennedy, Y. Fu, Topology optimization with natural frequency constraints using a quadratic approximation of a spectral aggregate, in: AIAA SCITECH 2022 Forum, 2022. https://doi.org/10.2514/6.2022-2244
  • L. Berrocal, R. Fernández, S. González, A. Periñán, S. Tudela, J. Vilanova, F. Lasagni, Topology optimization and additive manufacturing for aerospace components, Prog Addit Manuf 4 (2) (2019) 83–95. https://doi.org/10.1007/s40964-018-0061-3.
  • O. Okorie, A. Perveen, D. Talamona, K. Kostas, Topology optimization of an aerospace bracket: Numerical and experimental investigation, Appl Sci 13 (24) (2023) 13218. https://doi.org/10.3390/app132413218.
  • O. Ibhadode, A. Adeoye, R. Uhunmwangho, I. Ezema, Topology optimization for metal additive manufacturing: Current trends, challenges, and outlook, Virtual Phys Prototyp, 18 (1) (2023) e2151192. https://doi.org/10.1080/17452759.2023.2181192.
  • D. White, B. Jones, T. Smith, J. Harris, Multiscale topology optimization using neural network surrogates for lattice structures, Struct Multidiscip Optim 59 (5) (2019) 1767–1782.
  • F. Jia, P. Gao, A. Mo, Consider the multi-objective topology optimization design of a space structure under complex working conditions, Mathematics 13 (13) (2025) 2133. https://doi.org/10.3390/math13132133.
  • T. Saraçyakupoğlu, Usage of additive manufacturing and topology optimization process for weight reduction studies in the aviation industry, Adv Sci Technol Eng Syst J 6 (2) (2021) 815–820. https://dx.doi.org/10.25046/aj060294.
  • GrabCAD Community, Alcoa Airplane Bearing Bracket Challenge, 2025. https://grabcad.com/challenges/airplane-bearing-bracket-challenge.
There are 25 citations in total.

Details

Primary Language English
Subjects Optimization Techniques in Mechanical Engineering
Journal Section Research Article
Authors

Melih Canlıdinç 0000-0002-4011-9490

Submission Date October 27, 2025
Acceptance Date December 16, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 6 Issue: 3

Cite

APA Canlıdinç, M. (2025). Topology Optimization of an Aircraft Bracket with a Multi-Criteria Approach. Manufacturing Technologies and Applications, 6(3), 318-326. https://doi.org/10.52795/mateca.1811365
AMA Canlıdinç M. Topology Optimization of an Aircraft Bracket with a Multi-Criteria Approach. MATECA. December 2025;6(3):318-326. doi:10.52795/mateca.1811365
Chicago Canlıdinç, Melih. “Topology Optimization of an Aircraft Bracket With a Multi-Criteria Approach”. Manufacturing Technologies and Applications 6, no. 3 (December 2025): 318-26. https://doi.org/10.52795/mateca.1811365.
EndNote Canlıdinç M (December 1, 2025) Topology Optimization of an Aircraft Bracket with a Multi-Criteria Approach. Manufacturing Technologies and Applications 6 3 318–326.
IEEE M. Canlıdinç, “Topology Optimization of an Aircraft Bracket with a Multi-Criteria Approach”, MATECA, vol. 6, no. 3, pp. 318–326, 2025, doi: 10.52795/mateca.1811365.
ISNAD Canlıdinç, Melih. “Topology Optimization of an Aircraft Bracket With a Multi-Criteria Approach”. Manufacturing Technologies and Applications 6/3 (December2025), 318-326. https://doi.org/10.52795/mateca.1811365.
JAMA Canlıdinç M. Topology Optimization of an Aircraft Bracket with a Multi-Criteria Approach. MATECA. 2025;6:318–326.
MLA Canlıdinç, Melih. “Topology Optimization of an Aircraft Bracket With a Multi-Criteria Approach”. Manufacturing Technologies and Applications, vol. 6, no. 3, 2025, pp. 318-26, doi:10.52795/mateca.1811365.
Vancouver Canlıdinç M. Topology Optimization of an Aircraft Bracket with a Multi-Criteria Approach. MATECA. 2025;6(3):318-26.