Research Article
BibTex RIS Cite

The Influence of Velocity and Pressure on Residual Stresses During The Backward and Forward Extrusion of AA6061 T6 Aluminium Alloy

Year 2024, Volume: 5 Issue: 3, 295 - 303
https://doi.org/10.52795/mateca.1587573

Abstract

The extrusion process is considered a cost-effective manufacturing method compared to alternative production techniques, offering excellent mechanical properties and high product quality. Combined extrusion further enhances efficiency by minimizing the need for additional processing steps, thereby saving time and reducing production costs. The die geometry and friction factors play a critical role in determining the success and quality of this process. In this study, AA 6061 T6 aluminium alloy was selected as the billet material to investigate a combined backward–forward extrusion process and to examine the influence of process parameters, such as velocity and pressure, on the residual stresses formed in the extruded products. Two punch types were utilized: a hexagonal punch for the backward extrusion direction and a square punch for the forward extrusion direction. For each punch type, three different cross-sectional areas (140, 130, 115 mm2) and three different forming velocities (0.25, 0.5, 1 mm/s) were tested to assess the effect of forming pressure on residual stresses. The experiments were conducted using a heat-treated H13 steel die with a hydraulic press under lubricated conditions. The findings indicate that increasing the cross-sectional area of the punch, which corresponds to a reduction in pressing pressure, results in higher residual stresses at a constant velocity. The highest residual stresses were observed in the hexagonal region (1315 MPa), corresponding to the backward extrusion process. Intermediate stress levels (<990 MPa) were found in the middle regions between the backward and forward extrusion directions, while the lowest residual stresses (<588 MPa) were recorded in the forward extrusion region, associated with the square punch.

References

  • S.S. Jamali, G. Faraji, K. Abrinia, Evaluation of mechanical and metallurgical properties of AZ91 seamless tubes produced by radial – forward extrusion method, Materials Science and Engineering: A 666:176–183, 2016.
  • C.C. Chang , C.H. Hsu, J.C. Lai, Estimation of friction factor at workpiece die interface in combined forward and backward hollow extrusion of brass at microscale, Materials Research Innovations Vol 18S3:86-90, 2014.
  • C.Y. Sun, Y. Xiang, M.W. Fuji, Z.H. Sun, M.Q. Wang, J. Yang, The combined lateral and axial extrusion process of a branched component with two asymmetrically radial features, Materials and Design, 111: 492-503, 2016.
  • P. Koprowski, M. Bieda, S. Boczkal, A. Jarzębska, P. Ostachowski, J. Kawałko, T. Czeppe, W. Maziarz, М. Łagoda, K. Sztwiertnia, AA6013 aluminum alloy deformed by forward- backward rotating die (KoBo) : Microstructure and mechanical properties control by changing the die oscillation frequency, Journal of Materials Processing Technology, 253: 34-42, 2018.
  • R. Matsumoto , K. Hayashi, H. Utsunomiya, Experimental and numerical analysis of friction in high aspect ratio combined forward – backward extrusion with retreat and advance pulse ram motion on servo press, Journal of Materials Processing Technology, 214: 936-944, 2014.
  • H. Jafarzadeh, S. Barzegar, A Babaei, Analysis of deformation behavior in backward –radial- forward extrusion process, Transactions of the Indian Institute of Metals, 68: 191-199, 2015.
  • H. Alihosseini, M.A. Zaeem , K. Dehghani, A cyclic forward–backward extrusion process as a novel severe plastic deformation for production of ultrafine grains materials, Materials Letters, 68: 204-208, 2012.
  • C. Hu, Q. Yin, Z. Zhao, A novel method for determining friction in cold forging of complex parts using a steady combined forward and backward extrusion test, Journal of Materials Processing Technology, 249: 57-66, 2017. M.H. Paydar, M. Reihanian, E. Bagherpour, M. Sharifzadeh, M. Zarinejad, T.A. Dean, Consolidation of Al particles through forward–extrusion– equal channel angular pressing FE-ECAP, Materials Letters, 62(17-18): 3266-3268, 2008.
  • F.A. Shamaa, F. Salman, The effect of mechanical combined contact stress with buckling load on the stress distribution in the ball and socket joint mechanism, Al-Khwarizmi Engineering Journal, 6(1): 69-79, 2010.
  • F.A. Alshammaa, Upper bound analysis for round and hexagonal geometric in backward forward extrusion, Ph.D. Dissertation, University of Baghdad, College of Engineering, 2015.
  • E.H. Lee, R.L. Mallett, Stress and deformation analysis of the metal extrusion process, Computer Methods in Applied Mechanics and Engineering, 10: 339–353, 1977.
  • R.M. McMeeking, and E. H. Lee, The generation of residual stresses in metal forming, Rensselaer Polytechnic institute, Troy, NY 12181, Urbana, IL 61801, 1982.
  • X. Ma, M.B. De Rooij, D.J. Schipper, Modeling of contact and friction in aluminum extrusion, Tribology International, 43: 1138–1144, 2010.
  • N.S. Rossini, M. Dassisti, K.Y. Benyounis, A.G. Olabi, Methods of measuring residual stresses in components, Materials and Design, 35: 572–588, 2012.
  • R.A. Hussien, Effect of die shape on the temperature and stresses distribution in the compound forward-backward extrusion process, The Iraqi Journal for Mechanical and Material Engineering, 11:1-2, 2011.
  • B. Moroz, S. Stebunov, N. Biba, K. Meuller, Results of investigation forward and backward extrusion with FEM program QForm, 8th International Aluminum Extrusion Technology Seminar, 38–41, 2004, Orlando, Florida.
  • T. Koizuumi, M. Kuroda, Grain size effects in aluminum processed by severe plastic deformation, Materials Science and Engineering: A, 710: 300–308, 2018.
  • V. Jayaseelan, K. Kalaichelvan, Influence of friction factor on extrusion process, Advanced Materials Research, 622: 457–460, 2013.
  • M. Samuel, G. Anthony, Effects of vegetable based oils lubricants in the extrusion of aluminum, International Journal of Scientific and Technology Research, 5(8): 32-34, 2016.

AA6061 T6 Alüminyum Alaşımının Geri ve İleri Ekstrüzyonu Sırasında Hız ve Basıncın Kalıntı Gerilmeler Üzerine Etkisi

Year 2024, Volume: 5 Issue: 3, 295 - 303
https://doi.org/10.52795/mateca.1587573

Abstract

Ekstrüzyon işlemi, alternatif üretim tekniklerine kıyasla maliyet açısından etkili bir üretim yöntemi olarak kabul edilir ve mükemmel mekanik özellikler ve yüksek ürün kalitesi sunar. Kombine ekstrüzyon, ek işlem adımlarına olan ihtiyacı en aza indirerek verimliliği daha da artırır, böylece zamandan tasarruf sağlar ve üretim maliyetlerini azaltır. Kalıp geometrisi ve sürtünme faktörleri, bu işlemin başarısını ve kalitesini belirlemede kritik bir rol oynar. Bu çalışmada, birleşik geri-ileri ekstrüzyon işlemini araştırmak ve hız ve basınç gibi işlem parametrelerinin ekstrüde ürünlerde oluşan kalıntı gerilmeler üzerindeki etkisini incelemek için kütük malzemesi olarak alüminyum alaşımı AA 6061 T6 seçilmiştir. İki zımba tipi kullanılmıştır: geri ekstrüzyon yönü için altıgen zımba ve ileri ekstrüzyon yönü için kare zımba. Her zımba tipi için, presleme basıncının kalıntı gerilmeler üzerindeki etkisini değerlendirmek için üç farklı kesit alanı (140, 130, 115 mm2) ve üç farklı şekillendirme hızı (0.25, 0.5, 1 mm/s) ) test edilmiştir. Deneyler, yağlanmış koşullar altında hidrolik pres altında ısıl işlem görmüş bir H13 çelik kalıp kullanılarak gerçekleştirilmiştir. Bulgular, presleme basıncında bir azalmaya karşılık gelen zımbanın kesit alanının artırılmasının, sabit bir hızda daha yüksek kalıntı gerilimlerle sonuçlandığını göstermektedir. En yüksek kalıntı gerilimler (1315 MPa), geriye doğru ekstrüzyon işlemine karşılık gelen altıgen bölgede gözlemlenmiştir. Geri ve ileri ekstrüzyon yönleri arasındaki orta bölgelerde ara gerilim seviyeleri (<990 MPa) bulunurken, en düşük kalıntı gerilimler (<588 MPa), kare zımba ile ilişkili olan ileri ekstrüzyon bölgesinde kaydedilmiştir.

Thanks

We would like to thank Magnum Engineering Industry and Trade Co. Ltd. for their technical and financial support.

References

  • S.S. Jamali, G. Faraji, K. Abrinia, Evaluation of mechanical and metallurgical properties of AZ91 seamless tubes produced by radial – forward extrusion method, Materials Science and Engineering: A 666:176–183, 2016.
  • C.C. Chang , C.H. Hsu, J.C. Lai, Estimation of friction factor at workpiece die interface in combined forward and backward hollow extrusion of brass at microscale, Materials Research Innovations Vol 18S3:86-90, 2014.
  • C.Y. Sun, Y. Xiang, M.W. Fuji, Z.H. Sun, M.Q. Wang, J. Yang, The combined lateral and axial extrusion process of a branched component with two asymmetrically radial features, Materials and Design, 111: 492-503, 2016.
  • P. Koprowski, M. Bieda, S. Boczkal, A. Jarzębska, P. Ostachowski, J. Kawałko, T. Czeppe, W. Maziarz, М. Łagoda, K. Sztwiertnia, AA6013 aluminum alloy deformed by forward- backward rotating die (KoBo) : Microstructure and mechanical properties control by changing the die oscillation frequency, Journal of Materials Processing Technology, 253: 34-42, 2018.
  • R. Matsumoto , K. Hayashi, H. Utsunomiya, Experimental and numerical analysis of friction in high aspect ratio combined forward – backward extrusion with retreat and advance pulse ram motion on servo press, Journal of Materials Processing Technology, 214: 936-944, 2014.
  • H. Jafarzadeh, S. Barzegar, A Babaei, Analysis of deformation behavior in backward –radial- forward extrusion process, Transactions of the Indian Institute of Metals, 68: 191-199, 2015.
  • H. Alihosseini, M.A. Zaeem , K. Dehghani, A cyclic forward–backward extrusion process as a novel severe plastic deformation for production of ultrafine grains materials, Materials Letters, 68: 204-208, 2012.
  • C. Hu, Q. Yin, Z. Zhao, A novel method for determining friction in cold forging of complex parts using a steady combined forward and backward extrusion test, Journal of Materials Processing Technology, 249: 57-66, 2017. M.H. Paydar, M. Reihanian, E. Bagherpour, M. Sharifzadeh, M. Zarinejad, T.A. Dean, Consolidation of Al particles through forward–extrusion– equal channel angular pressing FE-ECAP, Materials Letters, 62(17-18): 3266-3268, 2008.
  • F.A. Shamaa, F. Salman, The effect of mechanical combined contact stress with buckling load on the stress distribution in the ball and socket joint mechanism, Al-Khwarizmi Engineering Journal, 6(1): 69-79, 2010.
  • F.A. Alshammaa, Upper bound analysis for round and hexagonal geometric in backward forward extrusion, Ph.D. Dissertation, University of Baghdad, College of Engineering, 2015.
  • E.H. Lee, R.L. Mallett, Stress and deformation analysis of the metal extrusion process, Computer Methods in Applied Mechanics and Engineering, 10: 339–353, 1977.
  • R.M. McMeeking, and E. H. Lee, The generation of residual stresses in metal forming, Rensselaer Polytechnic institute, Troy, NY 12181, Urbana, IL 61801, 1982.
  • X. Ma, M.B. De Rooij, D.J. Schipper, Modeling of contact and friction in aluminum extrusion, Tribology International, 43: 1138–1144, 2010.
  • N.S. Rossini, M. Dassisti, K.Y. Benyounis, A.G. Olabi, Methods of measuring residual stresses in components, Materials and Design, 35: 572–588, 2012.
  • R.A. Hussien, Effect of die shape on the temperature and stresses distribution in the compound forward-backward extrusion process, The Iraqi Journal for Mechanical and Material Engineering, 11:1-2, 2011.
  • B. Moroz, S. Stebunov, N. Biba, K. Meuller, Results of investigation forward and backward extrusion with FEM program QForm, 8th International Aluminum Extrusion Technology Seminar, 38–41, 2004, Orlando, Florida.
  • T. Koizuumi, M. Kuroda, Grain size effects in aluminum processed by severe plastic deformation, Materials Science and Engineering: A, 710: 300–308, 2018.
  • V. Jayaseelan, K. Kalaichelvan, Influence of friction factor on extrusion process, Advanced Materials Research, 622: 457–460, 2013.
  • M. Samuel, G. Anthony, Effects of vegetable based oils lubricants in the extrusion of aluminum, International Journal of Scientific and Technology Research, 5(8): 32-34, 2016.
There are 19 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Material Production Technologies, Manufacturing Processes and Technologies (Excl. Textiles)
Journal Section Research Articles
Authors

Ban Bakır 0000-0002-1448-892X

Haithem Aljawad 0000-0002-8306-766X

Faruk Mert 0000-0001-7298-6225

Çetin Karataş 0000-0003-0005-3068

Early Pub Date December 30, 2024
Publication Date
Submission Date November 18, 2024
Acceptance Date December 20, 2024
Published in Issue Year 2024 Volume: 5 Issue: 3

Cite

APA Bakır, B., Aljawad, H., Mert, F., Karataş, Ç. (2024). The Influence of Velocity and Pressure on Residual Stresses During The Backward and Forward Extrusion of AA6061 T6 Aluminium Alloy. Manufacturing Technologies and Applications, 5(3), 295-303. https://doi.org/10.52795/mateca.1587573
AMA Bakır B, Aljawad H, Mert F, Karataş Ç. The Influence of Velocity and Pressure on Residual Stresses During The Backward and Forward Extrusion of AA6061 T6 Aluminium Alloy. MATECA. December 2024;5(3):295-303. doi:10.52795/mateca.1587573
Chicago Bakır, Ban, Haithem Aljawad, Faruk Mert, and Çetin Karataş. “The Influence of Velocity and Pressure on Residual Stresses During The Backward and Forward Extrusion of AA6061 T6 Aluminium Alloy”. Manufacturing Technologies and Applications 5, no. 3 (December 2024): 295-303. https://doi.org/10.52795/mateca.1587573.
EndNote Bakır B, Aljawad H, Mert F, Karataş Ç (December 1, 2024) The Influence of Velocity and Pressure on Residual Stresses During The Backward and Forward Extrusion of AA6061 T6 Aluminium Alloy. Manufacturing Technologies and Applications 5 3 295–303.
IEEE B. Bakır, H. Aljawad, F. Mert, and Ç. Karataş, “The Influence of Velocity and Pressure on Residual Stresses During The Backward and Forward Extrusion of AA6061 T6 Aluminium Alloy”, MATECA, vol. 5, no. 3, pp. 295–303, 2024, doi: 10.52795/mateca.1587573.
ISNAD Bakır, Ban et al. “The Influence of Velocity and Pressure on Residual Stresses During The Backward and Forward Extrusion of AA6061 T6 Aluminium Alloy”. Manufacturing Technologies and Applications 5/3 (December 2024), 295-303. https://doi.org/10.52795/mateca.1587573.
JAMA Bakır B, Aljawad H, Mert F, Karataş Ç. The Influence of Velocity and Pressure on Residual Stresses During The Backward and Forward Extrusion of AA6061 T6 Aluminium Alloy. MATECA. 2024;5:295–303.
MLA Bakır, Ban et al. “The Influence of Velocity and Pressure on Residual Stresses During The Backward and Forward Extrusion of AA6061 T6 Aluminium Alloy”. Manufacturing Technologies and Applications, vol. 5, no. 3, 2024, pp. 295-03, doi:10.52795/mateca.1587573.
Vancouver Bakır B, Aljawad H, Mert F, Karataş Ç. The Influence of Velocity and Pressure on Residual Stresses During The Backward and Forward Extrusion of AA6061 T6 Aluminium Alloy. MATECA. 2024;5(3):295-303.