Year 2023,
, 153 - 163, 02.09.2023
Fatma Ekinci
,
Erhan Pişkin
References
- [1] Barbu, V., Lasiecka, I., Rammaha, M. A.: Existence and uniqueness of solutions to wave equations with nonlinear
degenerate damping and source terms. Control Cybernetics. 34(3), 665-687 (2005).
- [2] Nishihara, K., Yamada, Y.: On global solutions of some degenerate quasilinear hyperbolic equations with dissipative
terms. Funkcialaj Ekvacioj. 33, 151-159 (1990).
- [3] Ikehata, R., Matsuyama, T.: On global solutions and energy decay for the wave equations of Kirchhoff type with
nonlinear damping terms. Journal of Mathematical Analysis and Applications. 204, 729-753 (1996).
- [4] Ono, K.: Global existence, decay, and blow-up of solutions for some mildly degenerate nonlinear Kirchhoff strings.
Journal of Differential Equations. 137, 273-301 (1997).
- [5] Taniguchi, T.: Existence and asymptotic behaviour of solutions to weakly damped wave equations of Kirchhoff type with
nonlinear damping and source terms. Journal of Mathematical Analysis and Applications. 361(2), 566-578 (2010).
- [6] Han, X., Wang, M.: Global existence and blow-up of solutions for nonlinear viscoelastic wave equation with degenerate
damping and source. Mathematische Nachrichten. 284(5-6), 703-716 (2011).
- [7] Pitts, D. R., Rammaha, M. A.: Global existence and nonexistence theorems for nonlinear wave equations. Indiana
University Mathematics Journal. 51(6), 1479-1509 (2002).
- [8] Barbu, V., Lasiecka, I., Rammaha, M. A.: Blow-up of generalized solutions to wave equations with nonlinear degenerate
damping and source terms. Indiana University Mathematics Journal. 56(3), 995-1022 (2007).
- [9] Barbu, V., Lasiecka, I., Rammaha, M. A.: On nonlinear wave equations with degenerate damping and source terms.
Transactions of the American Mathematical Society. 357(7), 2571-2611 (2005).
- [10] Hu, Q., Zhang, H.: Blow up and asymptotic stability of weak solutions to wave equations with nonlinear degenerate
damping and source terms. Electronic Journal of Differential Equations. 2007(76), 1-10 (2007).
- [11] Xiao, S., Shubin,W.: A blow-up result with arbitrary positive initial energy for nonlinear wave equations with degenerate
damping terms. Journal of Differential Equations. 32, 181-190 (2019).
- [12] Ekinci, F., Pi¸skin, E.: Nonexistence of global solutions for the Timoshenko equation with degenerate damping. Discovering
Mathematics(Menemui Matematik). 43(1), 1-8 (2021).
- [13] Pi¸skin, E.: Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source
terms. Open Mathematics. 13, 408-420 (2005).
- [14] Pi¸skin, E., Irkıl, N.: Blow up positive initial-energy solutions for the extensible beam equation with nonlinear damping
and source terms. Facta Universitatis, Series: Mathematics and Informatics. 31(3), 645-654 (2016).
- [15] Pi¸skin, E., Yüksekkaya, H.: Non-existence of solutions for a Timoshenko equations with weak dissipation. Mathematica
Moravica. 22(2), 1-9 (2018).
- [16] Pereira, D. C., Nguyen, H., Raposo, C. A., Maranhao, C. H. M.: On the solutions for an extensible beam equation
with internal damping and source terms. Differential Equations & Applications. 11(3), 367-377 (2019).
- [17] Pereira, D. C., Raposo, C. A., Maranhao, C. H. M., Cattai, A. P.: Global existence and uniform decay of solutions
for a Kirchhoff beam equation with nonlinear damping and source term. Differential Equations and Dynamical
Systems.(2021). https://doi.org/10.1007/s12591-021-00563-x
- [18] Pi¸skin, E., Ekinci, F.: General decay and blowup of solutions for coupled viscoelastic equation of Kirchhoff type with
degenerate damping terms. Mathematical Methods in the Applied Sciences. 42(16), 1-21 (2019).
- [19] Pi¸skin, E., Ekinci, F.: Local existence and blow up of solutions for a coupled viscoelastic Kirchhoff-type equations with
degenerate damping. Miskolc Mathematical Notes. 22(2), 861-874 (2021).
- [20] Pi¸skin, E., Ekinci, F.: Blow up of solutions for a coupled Kirchhoff-type equations with degenerate damping terms.
Applications & Applied Mathematics. 14(2), 942-956 (2019).
- [21] Pi¸skin, E., Ekinci, F.: Global existence of solutions for a coupled viscoelastic plate equation with degenerate damping
terms. Tbilisi Mathematical Journal. 14, 195-206 (2021).
- [22] Pi¸skin, E., Ekinci, F., Zhang, H.: Blow up, lower bounds and exponential growth to a coupled quasilinear wave equations
with degenerate damping terms. Dynamics of Continuous, Discrete and Impulsive Systems. 29, 321-345 (2022).
- [23] Ekinci, F., Pi¸skin, E., Boulaaras, S. M., Mekawy, I.: Global existence and general decay of solutions for a quasilinear
system with degenerate damping terms. Journal of function Spaces. 2021, 4316238 (2021).
- [24] Ekinci, F., Pi¸skin, E.: Blow up and exponential growth to a Petrovsky equation with degenerate damping. Universal
Journal of Mathematics and Applications. 4(2), 82-87 (2021).
- [25] Ekinci, F., Pi¸skin, E.: Global existence and growth of solutions to coupled degeneratly damped Klein-Gordon equations.
Al-Qadisiyah Journal of Pure Science. 27(1), 29-40 (2022).
- [26] Ekinci, F., Pi¸skin, E.: Growth of solutions for fourth order viscoelastic system. Sigma Journal of Engineering and
Natural Sciences. 39(5), 41-47 (2021).
- [27] Ekinci, F., Pi¸skin, E., Zennir, K.: Existence, blow up and growth of solutions for a coupled quasi-linear viscoelastic
Petrovsky equations with degenerate damping terms. Journal of Information and Optimization Sciences. 43(4),
705-733 (2022).
- [28] Pi¸skin, E., Ekinci, F.: Blow up, exponential growth of solution for a reaction-diffusion equation with multiple nonlinearities.
Tbilisi Mathematical Journal. 12(4), 61-70 (2019).
- [29] Pi¸skin, E., Ekinci, F., Zennir, K.: Local existence and blow-up of solutions for coupled viscoelastic wave equations with
degenerate damping terms. Theoretical and Applied Mechanics. 47(1), 123-154 (2020).
- [30] Cordeiro, S. M. S., Pereira, D. C., Ferreira, J., Raposo, C. A.: Global solutions and exponential decay to a Klein–Gordon
equation of Kirchhoff-Carrier type with strong damping and nonlinear logarithmic source term. Partial Differential
Equations in Applied Mathematics. 3, 100018 (2021).
Blow up and Exponential Growth to a Kirchhoff-Type Viscoelastic Equation with Degenerate Damping Term
Year 2023,
, 153 - 163, 02.09.2023
Fatma Ekinci
,
Erhan Pişkin
Abstract
In this paper, we consider a Kirchhoff-type viscoelastic equation with degenerate damping term have initial and Dirichlet boundary conditions. We obtain the blow up and exponential growth of solutions with negative initial energy.
References
- [1] Barbu, V., Lasiecka, I., Rammaha, M. A.: Existence and uniqueness of solutions to wave equations with nonlinear
degenerate damping and source terms. Control Cybernetics. 34(3), 665-687 (2005).
- [2] Nishihara, K., Yamada, Y.: On global solutions of some degenerate quasilinear hyperbolic equations with dissipative
terms. Funkcialaj Ekvacioj. 33, 151-159 (1990).
- [3] Ikehata, R., Matsuyama, T.: On global solutions and energy decay for the wave equations of Kirchhoff type with
nonlinear damping terms. Journal of Mathematical Analysis and Applications. 204, 729-753 (1996).
- [4] Ono, K.: Global existence, decay, and blow-up of solutions for some mildly degenerate nonlinear Kirchhoff strings.
Journal of Differential Equations. 137, 273-301 (1997).
- [5] Taniguchi, T.: Existence and asymptotic behaviour of solutions to weakly damped wave equations of Kirchhoff type with
nonlinear damping and source terms. Journal of Mathematical Analysis and Applications. 361(2), 566-578 (2010).
- [6] Han, X., Wang, M.: Global existence and blow-up of solutions for nonlinear viscoelastic wave equation with degenerate
damping and source. Mathematische Nachrichten. 284(5-6), 703-716 (2011).
- [7] Pitts, D. R., Rammaha, M. A.: Global existence and nonexistence theorems for nonlinear wave equations. Indiana
University Mathematics Journal. 51(6), 1479-1509 (2002).
- [8] Barbu, V., Lasiecka, I., Rammaha, M. A.: Blow-up of generalized solutions to wave equations with nonlinear degenerate
damping and source terms. Indiana University Mathematics Journal. 56(3), 995-1022 (2007).
- [9] Barbu, V., Lasiecka, I., Rammaha, M. A.: On nonlinear wave equations with degenerate damping and source terms.
Transactions of the American Mathematical Society. 357(7), 2571-2611 (2005).
- [10] Hu, Q., Zhang, H.: Blow up and asymptotic stability of weak solutions to wave equations with nonlinear degenerate
damping and source terms. Electronic Journal of Differential Equations. 2007(76), 1-10 (2007).
- [11] Xiao, S., Shubin,W.: A blow-up result with arbitrary positive initial energy for nonlinear wave equations with degenerate
damping terms. Journal of Differential Equations. 32, 181-190 (2019).
- [12] Ekinci, F., Pi¸skin, E.: Nonexistence of global solutions for the Timoshenko equation with degenerate damping. Discovering
Mathematics(Menemui Matematik). 43(1), 1-8 (2021).
- [13] Pi¸skin, E.: Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source
terms. Open Mathematics. 13, 408-420 (2005).
- [14] Pi¸skin, E., Irkıl, N.: Blow up positive initial-energy solutions for the extensible beam equation with nonlinear damping
and source terms. Facta Universitatis, Series: Mathematics and Informatics. 31(3), 645-654 (2016).
- [15] Pi¸skin, E., Yüksekkaya, H.: Non-existence of solutions for a Timoshenko equations with weak dissipation. Mathematica
Moravica. 22(2), 1-9 (2018).
- [16] Pereira, D. C., Nguyen, H., Raposo, C. A., Maranhao, C. H. M.: On the solutions for an extensible beam equation
with internal damping and source terms. Differential Equations & Applications. 11(3), 367-377 (2019).
- [17] Pereira, D. C., Raposo, C. A., Maranhao, C. H. M., Cattai, A. P.: Global existence and uniform decay of solutions
for a Kirchhoff beam equation with nonlinear damping and source term. Differential Equations and Dynamical
Systems.(2021). https://doi.org/10.1007/s12591-021-00563-x
- [18] Pi¸skin, E., Ekinci, F.: General decay and blowup of solutions for coupled viscoelastic equation of Kirchhoff type with
degenerate damping terms. Mathematical Methods in the Applied Sciences. 42(16), 1-21 (2019).
- [19] Pi¸skin, E., Ekinci, F.: Local existence and blow up of solutions for a coupled viscoelastic Kirchhoff-type equations with
degenerate damping. Miskolc Mathematical Notes. 22(2), 861-874 (2021).
- [20] Pi¸skin, E., Ekinci, F.: Blow up of solutions for a coupled Kirchhoff-type equations with degenerate damping terms.
Applications & Applied Mathematics. 14(2), 942-956 (2019).
- [21] Pi¸skin, E., Ekinci, F.: Global existence of solutions for a coupled viscoelastic plate equation with degenerate damping
terms. Tbilisi Mathematical Journal. 14, 195-206 (2021).
- [22] Pi¸skin, E., Ekinci, F., Zhang, H.: Blow up, lower bounds and exponential growth to a coupled quasilinear wave equations
with degenerate damping terms. Dynamics of Continuous, Discrete and Impulsive Systems. 29, 321-345 (2022).
- [23] Ekinci, F., Pi¸skin, E., Boulaaras, S. M., Mekawy, I.: Global existence and general decay of solutions for a quasilinear
system with degenerate damping terms. Journal of function Spaces. 2021, 4316238 (2021).
- [24] Ekinci, F., Pi¸skin, E.: Blow up and exponential growth to a Petrovsky equation with degenerate damping. Universal
Journal of Mathematics and Applications. 4(2), 82-87 (2021).
- [25] Ekinci, F., Pi¸skin, E.: Global existence and growth of solutions to coupled degeneratly damped Klein-Gordon equations.
Al-Qadisiyah Journal of Pure Science. 27(1), 29-40 (2022).
- [26] Ekinci, F., Pi¸skin, E.: Growth of solutions for fourth order viscoelastic system. Sigma Journal of Engineering and
Natural Sciences. 39(5), 41-47 (2021).
- [27] Ekinci, F., Pi¸skin, E., Zennir, K.: Existence, blow up and growth of solutions for a coupled quasi-linear viscoelastic
Petrovsky equations with degenerate damping terms. Journal of Information and Optimization Sciences. 43(4),
705-733 (2022).
- [28] Pi¸skin, E., Ekinci, F.: Blow up, exponential growth of solution for a reaction-diffusion equation with multiple nonlinearities.
Tbilisi Mathematical Journal. 12(4), 61-70 (2019).
- [29] Pi¸skin, E., Ekinci, F., Zennir, K.: Local existence and blow-up of solutions for coupled viscoelastic wave equations with
degenerate damping terms. Theoretical and Applied Mechanics. 47(1), 123-154 (2020).
- [30] Cordeiro, S. M. S., Pereira, D. C., Ferreira, J., Raposo, C. A.: Global solutions and exponential decay to a Klein–Gordon
equation of Kirchhoff-Carrier type with strong damping and nonlinear logarithmic source term. Partial Differential
Equations in Applied Mathematics. 3, 100018 (2021).