Year 2023,
, 56 - 66, 28.03.2023
Mehmet Gümüş
,
Şeyma Irmak Eğilmez
References
- [1] Elsayed, E. M.: New method to obtain periodic solutions of period two and three of a rational difference equation.
Nonlinear Dynamics. 79 (1), 241-250 (2014).
- [2] Moaaz, O.: Comment on "new method to obtain periodic solutions of period two and three of a rational difference
equation" [Nonlinear Dyn 79:241–250]. Nonlinear Dyn. 88, 1043-1049 (2017).
- [3] Elaydi, S.: An introduction to difference equations. 3rd ed. Springer-Verlag. New York (2005).
- [4] Kelley, W. G., Peterson, A. C.: Difference equations: An introduction with applications. Academic Press. New
York (1991).
- [5] Koci´c, V., Ladas, G.: Global behavior of non-linear difference equations of higher-order with applications.
Kluwer Academic Publishers. Dordrecht (1993).
- [6] Levin, S. A., May, R. M.: A note on difference-delay equations. Theoretical Population Biology. 9 (2), 178-187 (1976).
- [7] Mickens, R. E.: Difference equations, theory and applications. Van Nostrand Rheinhold. (1990).
- [8] Allen, L. J. S.: An introduction to mathematical biology. Pearson/Prentice Hall. New Jersey (2007).
- [9] Murray, J. D.: Mathematical biology I: An introduction. 3rd ed. Springer. (2002).
- [10] Pielou, E. C.: An introduction to mathematical ecology. Wiley Interscience. New York (1969).
- [11] Oztepe, G. S.: An investigation on the Lasota-Wazewska model with a piecewise constant argument. Hacettepe Journal
of Mathematics and Statistics. 50 (5), 1500-1508 (2021).
- [12] Abo-Zeid, R.: Global attractivity of a higher-order difference equation. Discrete Dynamics in Nature and Society.
2012, 930410 (2012).
- [13] Abo-Zeid, R.: Global behavior of a higher-order difference equation. Mathematica Slovaca. 64 (4), 931-940 (2014).
- [14] Belhannache, F., Touafek, N., Abo-Zeid, R.: Dynamics of a third-order rational difference equation. Bulletin Mathematique
de La Societe Des Sciences Mathematiques de Roumanie. 59(107) (1), 13-22 (2016).
- [15] Gumus, M.: Global dynamics of solutions of a new class of rational difference equations. Konuralp Journal of Mathematics.
7 (2), 380-387 (2019).
- [16] Gumus, M.: Analysis of periodicity for a new class of non-linear difference equations by using a new method. Electron. J.
Math. Anal. Appl. 8, 109-116 (2020).
- [17] Halim, Y., Touafek, N.,Yazlik, Y.: Dynamic behavior of a second-order non-linear rational difference equation. Turkish
Journal of Mathematics. 39 (6), 1004-1018 (2015).
- [18] Touafek, N., Halim, Y.: Global attractivity of a rational difference equation. Mathematical Sciences Letters. 2 (3),
161-165 (2013).
- [19] Yalçınkaya, I.: On the difference equation xn+1 = + xnm=xk
n: Discrete Dynamics in Nature and Society. 2008,
805460 (2008).
- [20] Moaaz, O., Chalishajar, D., Bazighifan, O.: Some qualitative behavior of solutions of general class of difference equation.
Mathematics. 7, 585 (2019).
- [21] Moaaz, O.: Dynamics of difference equation xn+1 = f(xnl; xnk). Advances in Difference Equations. 2018, 447
(2018).
- [22] Moaaz, O., Mahjoub, H., Muhib, A.: On the periodicity of general class of difference equations. Axioms. 9, 75 (2020).
- [23] Abdelrahman, M. A. E.: On the difference equation zm+1 = f(zm; zm1; : : : ; zmk): Journal of Taibah University
for Science. 13 (1), 1014-1021 (2019).
- [24] Kulenovi´c, M. R. S., Ladas, G.: Dynamics of second-order rational difference equations. Chapman & Hall/CRC.
(2001).
- [25] Border, K. C.: Euler’s theorem for homogeneous function. Caltech Division of The Humanities and Social Sciences.
27, 16-34 (2017).
- [26] Boulouh, M., Touafek, N., Tollu, D. T.: On the behavior of the solutions of an abstract system of difference equations.
Journal of Applied Mathematics and Computing. 68, 2937-2969 (2022).
On the Qualitative Behavior of the Difference Equation $\delta _{m+1}=\omega +\zeta \frac{f(\delta _{m},\delta _{m-1})}{\delta _{m-1}^{\beta}}$
Year 2023,
, 56 - 66, 28.03.2023
Mehmet Gümüş
,
Şeyma Irmak Eğilmez
Abstract
In this paper, we aim to investigate the qualitative behavior of a general class of non-linear difference equations. That is, the prime period two solutions, the prime period three solutions and the stability character are examined. We also use a new technique introduced in [1] by E. M. Elsayed and later developed by O. Moaaz in [2] to examine the existence of periodic solutions of these general equations. Moreover, we use homogeneous functions for the investigation of the dynamics of the aforementioned equations.
References
- [1] Elsayed, E. M.: New method to obtain periodic solutions of period two and three of a rational difference equation.
Nonlinear Dynamics. 79 (1), 241-250 (2014).
- [2] Moaaz, O.: Comment on "new method to obtain periodic solutions of period two and three of a rational difference
equation" [Nonlinear Dyn 79:241–250]. Nonlinear Dyn. 88, 1043-1049 (2017).
- [3] Elaydi, S.: An introduction to difference equations. 3rd ed. Springer-Verlag. New York (2005).
- [4] Kelley, W. G., Peterson, A. C.: Difference equations: An introduction with applications. Academic Press. New
York (1991).
- [5] Koci´c, V., Ladas, G.: Global behavior of non-linear difference equations of higher-order with applications.
Kluwer Academic Publishers. Dordrecht (1993).
- [6] Levin, S. A., May, R. M.: A note on difference-delay equations. Theoretical Population Biology. 9 (2), 178-187 (1976).
- [7] Mickens, R. E.: Difference equations, theory and applications. Van Nostrand Rheinhold. (1990).
- [8] Allen, L. J. S.: An introduction to mathematical biology. Pearson/Prentice Hall. New Jersey (2007).
- [9] Murray, J. D.: Mathematical biology I: An introduction. 3rd ed. Springer. (2002).
- [10] Pielou, E. C.: An introduction to mathematical ecology. Wiley Interscience. New York (1969).
- [11] Oztepe, G. S.: An investigation on the Lasota-Wazewska model with a piecewise constant argument. Hacettepe Journal
of Mathematics and Statistics. 50 (5), 1500-1508 (2021).
- [12] Abo-Zeid, R.: Global attractivity of a higher-order difference equation. Discrete Dynamics in Nature and Society.
2012, 930410 (2012).
- [13] Abo-Zeid, R.: Global behavior of a higher-order difference equation. Mathematica Slovaca. 64 (4), 931-940 (2014).
- [14] Belhannache, F., Touafek, N., Abo-Zeid, R.: Dynamics of a third-order rational difference equation. Bulletin Mathematique
de La Societe Des Sciences Mathematiques de Roumanie. 59(107) (1), 13-22 (2016).
- [15] Gumus, M.: Global dynamics of solutions of a new class of rational difference equations. Konuralp Journal of Mathematics.
7 (2), 380-387 (2019).
- [16] Gumus, M.: Analysis of periodicity for a new class of non-linear difference equations by using a new method. Electron. J.
Math. Anal. Appl. 8, 109-116 (2020).
- [17] Halim, Y., Touafek, N.,Yazlik, Y.: Dynamic behavior of a second-order non-linear rational difference equation. Turkish
Journal of Mathematics. 39 (6), 1004-1018 (2015).
- [18] Touafek, N., Halim, Y.: Global attractivity of a rational difference equation. Mathematical Sciences Letters. 2 (3),
161-165 (2013).
- [19] Yalçınkaya, I.: On the difference equation xn+1 = + xnm=xk
n: Discrete Dynamics in Nature and Society. 2008,
805460 (2008).
- [20] Moaaz, O., Chalishajar, D., Bazighifan, O.: Some qualitative behavior of solutions of general class of difference equation.
Mathematics. 7, 585 (2019).
- [21] Moaaz, O.: Dynamics of difference equation xn+1 = f(xnl; xnk). Advances in Difference Equations. 2018, 447
(2018).
- [22] Moaaz, O., Mahjoub, H., Muhib, A.: On the periodicity of general class of difference equations. Axioms. 9, 75 (2020).
- [23] Abdelrahman, M. A. E.: On the difference equation zm+1 = f(zm; zm1; : : : ; zmk): Journal of Taibah University
for Science. 13 (1), 1014-1021 (2019).
- [24] Kulenovi´c, M. R. S., Ladas, G.: Dynamics of second-order rational difference equations. Chapman & Hall/CRC.
(2001).
- [25] Border, K. C.: Euler’s theorem for homogeneous function. Caltech Division of The Humanities and Social Sciences.
27, 16-34 (2017).
- [26] Boulouh, M., Touafek, N., Tollu, D. T.: On the behavior of the solutions of an abstract system of difference equations.
Journal of Applied Mathematics and Computing. 68, 2937-2969 (2022).