Research Article
BibTex RIS Cite

Strongly Lacunary $\mathcal{I}^{\ast }$-Convergence and Strongly Lacunary $\mathcal{I}^{\ast }$-Cauchy Sequence

Year 2024, , 20 - 27, 28.01.2024
https://doi.org/10.36753/mathenot.1330281

Abstract

In this paper, we defined the concepts of lacunary $\mathcal{I}^{\ast}$-convergence and strongly lacunary $\mathcal{I}^{\ast}$-convergence. We investigated the relations between strongly lacunary $\mathcal{I}$-convergence and strongly lacunary $\mathcal{I}^{\ast}$-convergence. Also, we defined the concept of strongly lacunary $\mathcal{I}^{\ast}$-Cauchy sequence and investigated the relations between strongly lacunary $\mathcal{I}$-Cauchy sequence and strongly lacunary $\mathcal{I}^{\ast}$-Cauchy sequence.

References

  • [1] Fast, H.: Sur la convergence statistique. Colloquium Mathematicum. 2, 241-244 (1951).
  • [2] Schoenberg, I.J.: The integrability of certain functions and related summability methods. The American Mathematical Monthly. 66, 361-375 (1959).
  • [3] Kostyrko, P., Šalát T., Wilczynski,W.: I-convergence. Real Analysis Exchange. 26(2), 669-686 (2000).
  • [4] Nabiev, A., Pehlivan, S., Gürdal, M.: On I-Cauchy sequence. Taiwanese Journal of Mathematics. 11(2), 569-576 (2007).
  • [5] Das, P., SavaŞ, E., Ghosal, S. Kr.: On generalized of certain summability methods using ideals. Applied Mathematics Letters. 36, 1509-1514 (2011).
  • [6] Yamancı, U., Gürdal, M.: On lacunary ideal convergence in random n-normed space, Journal of Mathematics. 2013, Article ID 868457, 8 pages, (2013).
  • [7] Debnath, P.: Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces, Computers & Mathematics with Applications. 63, 708-715 (2012).
  • [8] Tripathy, B.C., Hazarika, B., Choudhary, B.: Lacunary I-convergent sequences. Kyungpook Mathematical Journal. 52, 473-482 (2012).
  • [9] Nabiev, A., Sava¸s, E., Gürdal, M.: Statistically localized sequences in metric spaces. Journal of Applied Analysis & Computation. 9(2), 739-746 (2019).
  • [10] Şahiner, A., Gürdal. M., Yiğit, T.: Ideal convergence characterization of the completion of linear n-normed spaces. Computers & Mathematics with Applications. 61(3), 683-689 (2011).
  • [11] Savaş, E., Gürdal, M.: I-statistical convergence in probabilistic normed spaces. Bucharest Scientific Bulletin Series A Applied Mathematics and Physics. 77(4), 195-204 (2015).
  • [12] Akın, P. N., Dündar, E., Yalvaç, Ş.: Lacunary I∗-convergence and lacunary I∗-Cauchy sequence. (in review).
  • [13] Dündar, E., Altay, B.: I2-convergence and I2-Cauchy of double sequences. Acta Mathematica Scientia. 34B(2), 343-353 (2014).
  • [14] Dündar, E., Altay B.: On some properties of I2-convergence and I2-Cauchy of double sequences. General Mathematics Notes. 7(1), 1-12 (2011).
  • [15] Dündar, E., Ulusu, U., Pancaroğlu, N.: Strongly I2-lacunary convergence and I2-lacunary Cauchy double sequences of sets. The Aligarh Bulletin Of Mathematics. 35(1-2), 1-5 (2016).
  • [16] Dündar, E., Ulusu, U.: On Rough I-convergence and I-Cauchy sequence for functions defined on amenable semigroup. Universal Journal of Mathematics and Applications. 6(2), 86-90 (2023).
  • [17] Freedman, A. R., Sember, J. J., Raphael, M.: Some Cesàro type summability spaces. Proceedings of the London Mathematical Society. 37, 508-520 (1978).
  • [18] Sever, Y., Ulusu U., Dündar, E.: On strongly I and I∗-lacunary convergence of sequences of sets. AIP Conference Proceedings. 1611(357), 7 pages, (2014).
  • [19] Ulusu, U., Nuray, F.: On strongly lacunary summability of sequences of sets. Journal of Applied Mathematics & Bioinformatics. 3(3), 75-88 (2013).
  • [20] Ulusu, U., Dündar, E: I-lacunary statistical convergence of sequences of sets. Filomat, 28(8), 1567-1574 (2014).
  • [21] Ulusu, U., Nuray, F., Dündar, E.: I-limit and I-cluster points for functions defined on amenable semigroups. Fundamental Journal of Mathematics and Applications. 4(2), 45-48 (2021).
Year 2024, , 20 - 27, 28.01.2024
https://doi.org/10.36753/mathenot.1330281

Abstract

References

  • [1] Fast, H.: Sur la convergence statistique. Colloquium Mathematicum. 2, 241-244 (1951).
  • [2] Schoenberg, I.J.: The integrability of certain functions and related summability methods. The American Mathematical Monthly. 66, 361-375 (1959).
  • [3] Kostyrko, P., Šalát T., Wilczynski,W.: I-convergence. Real Analysis Exchange. 26(2), 669-686 (2000).
  • [4] Nabiev, A., Pehlivan, S., Gürdal, M.: On I-Cauchy sequence. Taiwanese Journal of Mathematics. 11(2), 569-576 (2007).
  • [5] Das, P., SavaŞ, E., Ghosal, S. Kr.: On generalized of certain summability methods using ideals. Applied Mathematics Letters. 36, 1509-1514 (2011).
  • [6] Yamancı, U., Gürdal, M.: On lacunary ideal convergence in random n-normed space, Journal of Mathematics. 2013, Article ID 868457, 8 pages, (2013).
  • [7] Debnath, P.: Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces, Computers & Mathematics with Applications. 63, 708-715 (2012).
  • [8] Tripathy, B.C., Hazarika, B., Choudhary, B.: Lacunary I-convergent sequences. Kyungpook Mathematical Journal. 52, 473-482 (2012).
  • [9] Nabiev, A., Sava¸s, E., Gürdal, M.: Statistically localized sequences in metric spaces. Journal of Applied Analysis & Computation. 9(2), 739-746 (2019).
  • [10] Şahiner, A., Gürdal. M., Yiğit, T.: Ideal convergence characterization of the completion of linear n-normed spaces. Computers & Mathematics with Applications. 61(3), 683-689 (2011).
  • [11] Savaş, E., Gürdal, M.: I-statistical convergence in probabilistic normed spaces. Bucharest Scientific Bulletin Series A Applied Mathematics and Physics. 77(4), 195-204 (2015).
  • [12] Akın, P. N., Dündar, E., Yalvaç, Ş.: Lacunary I∗-convergence and lacunary I∗-Cauchy sequence. (in review).
  • [13] Dündar, E., Altay, B.: I2-convergence and I2-Cauchy of double sequences. Acta Mathematica Scientia. 34B(2), 343-353 (2014).
  • [14] Dündar, E., Altay B.: On some properties of I2-convergence and I2-Cauchy of double sequences. General Mathematics Notes. 7(1), 1-12 (2011).
  • [15] Dündar, E., Ulusu, U., Pancaroğlu, N.: Strongly I2-lacunary convergence and I2-lacunary Cauchy double sequences of sets. The Aligarh Bulletin Of Mathematics. 35(1-2), 1-5 (2016).
  • [16] Dündar, E., Ulusu, U.: On Rough I-convergence and I-Cauchy sequence for functions defined on amenable semigroup. Universal Journal of Mathematics and Applications. 6(2), 86-90 (2023).
  • [17] Freedman, A. R., Sember, J. J., Raphael, M.: Some Cesàro type summability spaces. Proceedings of the London Mathematical Society. 37, 508-520 (1978).
  • [18] Sever, Y., Ulusu U., Dündar, E.: On strongly I and I∗-lacunary convergence of sequences of sets. AIP Conference Proceedings. 1611(357), 7 pages, (2014).
  • [19] Ulusu, U., Nuray, F.: On strongly lacunary summability of sequences of sets. Journal of Applied Mathematics & Bioinformatics. 3(3), 75-88 (2013).
  • [20] Ulusu, U., Dündar, E: I-lacunary statistical convergence of sequences of sets. Filomat, 28(8), 1567-1574 (2014).
  • [21] Ulusu, U., Nuray, F., Dündar, E.: I-limit and I-cluster points for functions defined on amenable semigroups. Fundamental Journal of Mathematics and Applications. 4(2), 45-48 (2021).
There are 21 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Nimet Pancaroğlu Akın 0000-0003-2886-3679

Erdinç Dündar 0000-0002-0545-7486

Early Pub Date November 2, 2023
Publication Date January 28, 2024
Submission Date July 20, 2023
Acceptance Date September 13, 2023
Published in Issue Year 2024

Cite

APA Pancaroğlu Akın, N., & Dündar, E. (2024). Strongly Lacunary $\mathcal{I}^{\ast }$-Convergence and Strongly Lacunary $\mathcal{I}^{\ast }$-Cauchy Sequence. Mathematical Sciences and Applications E-Notes, 12(1), 20-27. https://doi.org/10.36753/mathenot.1330281
AMA Pancaroğlu Akın N, Dündar E. Strongly Lacunary $\mathcal{I}^{\ast }$-Convergence and Strongly Lacunary $\mathcal{I}^{\ast }$-Cauchy Sequence. Math. Sci. Appl. E-Notes. January 2024;12(1):20-27. doi:10.36753/mathenot.1330281
Chicago Pancaroğlu Akın, Nimet, and Erdinç Dündar. “Strongly Lacunary $\mathcal{I}^{\ast }$-Convergence and Strongly Lacunary $\mathcal{I}^{\ast }$-Cauchy Sequence”. Mathematical Sciences and Applications E-Notes 12, no. 1 (January 2024): 20-27. https://doi.org/10.36753/mathenot.1330281.
EndNote Pancaroğlu Akın N, Dündar E (January 1, 2024) Strongly Lacunary $\mathcal{I}^{\ast }$-Convergence and Strongly Lacunary $\mathcal{I}^{\ast }$-Cauchy Sequence. Mathematical Sciences and Applications E-Notes 12 1 20–27.
IEEE N. Pancaroğlu Akın and E. Dündar, “Strongly Lacunary $\mathcal{I}^{\ast }$-Convergence and Strongly Lacunary $\mathcal{I}^{\ast }$-Cauchy Sequence”, Math. Sci. Appl. E-Notes, vol. 12, no. 1, pp. 20–27, 2024, doi: 10.36753/mathenot.1330281.
ISNAD Pancaroğlu Akın, Nimet - Dündar, Erdinç. “Strongly Lacunary $\mathcal{I}^{\ast }$-Convergence and Strongly Lacunary $\mathcal{I}^{\ast }$-Cauchy Sequence”. Mathematical Sciences and Applications E-Notes 12/1 (January 2024), 20-27. https://doi.org/10.36753/mathenot.1330281.
JAMA Pancaroğlu Akın N, Dündar E. Strongly Lacunary $\mathcal{I}^{\ast }$-Convergence and Strongly Lacunary $\mathcal{I}^{\ast }$-Cauchy Sequence. Math. Sci. Appl. E-Notes. 2024;12:20–27.
MLA Pancaroğlu Akın, Nimet and Erdinç Dündar. “Strongly Lacunary $\mathcal{I}^{\ast }$-Convergence and Strongly Lacunary $\mathcal{I}^{\ast }$-Cauchy Sequence”. Mathematical Sciences and Applications E-Notes, vol. 12, no. 1, 2024, pp. 20-27, doi:10.36753/mathenot.1330281.
Vancouver Pancaroğlu Akın N, Dündar E. Strongly Lacunary $\mathcal{I}^{\ast }$-Convergence and Strongly Lacunary $\mathcal{I}^{\ast }$-Cauchy Sequence. Math. Sci. Appl. E-Notes. 2024;12(1):20-7.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.