Research Article
BibTex RIS Cite

The Source of $\Gamma$-Primeness on $\Gamma$-Rings

Year 2024, , 36 - 42, 28.01.2024
https://doi.org/10.36753/mathenot.1389757

Abstract

The source of the primeness texture is a skeleton that generalizes traditional prime rings. In this context, our primary aim in this study is to describe the source of $\Gamma$-primeness in $\Gamma$-rings not included in the literature.
This work's purpose is to generalize the concept of the source of primeness to a $\Gamma$-ring. In this study, the characteristics provided by the defined concept are also discussed, and the results achieved are exemplified.

References

  • [1] Nobusawa, N.: On a generalization of the ring theory. Osaka Journal of Mathematics. 1, 81-89 (1964).
  • [2] Barnes,W.: On the 􀀀-rings of Nobusawa. Pacific Journal of Mathematics. 18(3), 411-422 (1966).
  • [3] Kyuno, S.: On prime 􀀀-rings. Pacific Journal of Mathematics. 75(1), 185-190 (1978).
  • [4] Kyuno, S.: Prime ideals in 􀀀-rings. Pacific Journal of Mathematics. 98(2), 375-379 (1982).
  • [5] Ravisankar, T. S., Shukla, U. S.: Structure of 􀀀-rings. Pacific Journal of Mathematics. 82(2), 537-559 (1979).
  • [6] Ardakani, L. K., Davvaz, B., Huang, S.: On derivations of prime and semi-prime Gamma rings. Boletim da Sociedade Paranaense de Matemática. 37(2), 157-166 (2019).
  • [7] Kyuno, S., Nobusawa, N., Smith, M. B.: Regular gamma rings. Tsukuba journal of mathematics. 11(2), 371-382 (1987).
  • [8] Estaji, A. A., Khorasani, A. S., Baghdari, S.: Multiplication Ideals in Gamma-rings. Journal of Hyperstructures. 2(1), (2013).
  • [9] Aydın, N., Demir, Ç., Karalarlıo˘glu Camcı, D.: The source of semiprimeness of rings. Communications of the Korean Mathematical Society. 33(4), 1083-1096 (2018).
  • [10] Arslan, O., Düzkaya, N.: The Source of Semi-Primeness of 􀀀-Rings. Fundamentals of Contemporary Mathematical Sciences. 4(2), 87-95 (2023).
  • [11] Karalarlıoglu Camcı, D.: Source of Semiprimeness and Multiplicative (generalized) Derivations in Rings. PhD dissertation. Çanakkale Onsekiz Mart University, Ç, (2017).
  • [12] Yeşil, D., Karalarlıoğlu Camcı, D.: The Source of Primeness of Rings. Journal of New Theory. 41, 100-104 (2022).
  • [13] Tabatabaee, Z. S., Roodbarylor, T.: The Construction of Fraction Gamma Rings and Local Gamma Rings by Using Commutative Gamma Rings. Journal of Mathematical Extension. 12(1), 73-86 (2018).
  • [14] Dükel, K. Ç., Çeven, Y.: Additivity of Multiplicative Isomorphisms in Gamma Rings. Palestine Journal of Mathematics. 6, (2017).
  • [15] Paul, R.: On various types of ideals of 􀀀-rings and the corresponding operator rings. International Journal of engineering Research and Applications. 5(8), 95-98 (2015).
  • [16] Adham Abdallah, Q.: Derivations on 􀀀-Rings, Prime 􀀀-Rings and Semiprime 􀀀-Rings. Doctoral Thesis. Faculty of Graduate Studies, Hebron University, Hebron, Palestine. (2017).
Year 2024, , 36 - 42, 28.01.2024
https://doi.org/10.36753/mathenot.1389757

Abstract

References

  • [1] Nobusawa, N.: On a generalization of the ring theory. Osaka Journal of Mathematics. 1, 81-89 (1964).
  • [2] Barnes,W.: On the 􀀀-rings of Nobusawa. Pacific Journal of Mathematics. 18(3), 411-422 (1966).
  • [3] Kyuno, S.: On prime 􀀀-rings. Pacific Journal of Mathematics. 75(1), 185-190 (1978).
  • [4] Kyuno, S.: Prime ideals in 􀀀-rings. Pacific Journal of Mathematics. 98(2), 375-379 (1982).
  • [5] Ravisankar, T. S., Shukla, U. S.: Structure of 􀀀-rings. Pacific Journal of Mathematics. 82(2), 537-559 (1979).
  • [6] Ardakani, L. K., Davvaz, B., Huang, S.: On derivations of prime and semi-prime Gamma rings. Boletim da Sociedade Paranaense de Matemática. 37(2), 157-166 (2019).
  • [7] Kyuno, S., Nobusawa, N., Smith, M. B.: Regular gamma rings. Tsukuba journal of mathematics. 11(2), 371-382 (1987).
  • [8] Estaji, A. A., Khorasani, A. S., Baghdari, S.: Multiplication Ideals in Gamma-rings. Journal of Hyperstructures. 2(1), (2013).
  • [9] Aydın, N., Demir, Ç., Karalarlıo˘glu Camcı, D.: The source of semiprimeness of rings. Communications of the Korean Mathematical Society. 33(4), 1083-1096 (2018).
  • [10] Arslan, O., Düzkaya, N.: The Source of Semi-Primeness of 􀀀-Rings. Fundamentals of Contemporary Mathematical Sciences. 4(2), 87-95 (2023).
  • [11] Karalarlıoglu Camcı, D.: Source of Semiprimeness and Multiplicative (generalized) Derivations in Rings. PhD dissertation. Çanakkale Onsekiz Mart University, Ç, (2017).
  • [12] Yeşil, D., Karalarlıoğlu Camcı, D.: The Source of Primeness of Rings. Journal of New Theory. 41, 100-104 (2022).
  • [13] Tabatabaee, Z. S., Roodbarylor, T.: The Construction of Fraction Gamma Rings and Local Gamma Rings by Using Commutative Gamma Rings. Journal of Mathematical Extension. 12(1), 73-86 (2018).
  • [14] Dükel, K. Ç., Çeven, Y.: Additivity of Multiplicative Isomorphisms in Gamma Rings. Palestine Journal of Mathematics. 6, (2017).
  • [15] Paul, R.: On various types of ideals of 􀀀-rings and the corresponding operator rings. International Journal of engineering Research and Applications. 5(8), 95-98 (2015).
  • [16] Adham Abdallah, Q.: Derivations on 􀀀-Rings, Prime 􀀀-Rings and Semiprime 􀀀-Rings. Doctoral Thesis. Faculty of Graduate Studies, Hebron University, Hebron, Palestine. (2017).
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Articles
Authors

Didem Yeşil 0000-0003-0666-9410

Rasie Mekera 0000-0002-0092-2991

Early Pub Date January 21, 2024
Publication Date January 28, 2024
Submission Date November 12, 2023
Acceptance Date January 2, 2024
Published in Issue Year 2024

Cite

APA Yeşil, D., & Mekera, R. (2024). The Source of $\Gamma$-Primeness on $\Gamma$-Rings. Mathematical Sciences and Applications E-Notes, 12(1), 36-42. https://doi.org/10.36753/mathenot.1389757
AMA Yeşil D, Mekera R. The Source of $\Gamma$-Primeness on $\Gamma$-Rings. Math. Sci. Appl. E-Notes. January 2024;12(1):36-42. doi:10.36753/mathenot.1389757
Chicago Yeşil, Didem, and Rasie Mekera. “The Source of $\Gamma$-Primeness on $\Gamma$-Rings”. Mathematical Sciences and Applications E-Notes 12, no. 1 (January 2024): 36-42. https://doi.org/10.36753/mathenot.1389757.
EndNote Yeşil D, Mekera R (January 1, 2024) The Source of $\Gamma$-Primeness on $\Gamma$-Rings. Mathematical Sciences and Applications E-Notes 12 1 36–42.
IEEE D. Yeşil and R. Mekera, “The Source of $\Gamma$-Primeness on $\Gamma$-Rings”, Math. Sci. Appl. E-Notes, vol. 12, no. 1, pp. 36–42, 2024, doi: 10.36753/mathenot.1389757.
ISNAD Yeşil, Didem - Mekera, Rasie. “The Source of $\Gamma$-Primeness on $\Gamma$-Rings”. Mathematical Sciences and Applications E-Notes 12/1 (January 2024), 36-42. https://doi.org/10.36753/mathenot.1389757.
JAMA Yeşil D, Mekera R. The Source of $\Gamma$-Primeness on $\Gamma$-Rings. Math. Sci. Appl. E-Notes. 2024;12:36–42.
MLA Yeşil, Didem and Rasie Mekera. “The Source of $\Gamma$-Primeness on $\Gamma$-Rings”. Mathematical Sciences and Applications E-Notes, vol. 12, no. 1, 2024, pp. 36-42, doi:10.36753/mathenot.1389757.
Vancouver Yeşil D, Mekera R. The Source of $\Gamma$-Primeness on $\Gamma$-Rings. Math. Sci. Appl. E-Notes. 2024;12(1):36-42.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.