Research Article
BibTex RIS Cite
Year 2024, , 93 - 100, 14.04.2024
https://doi.org/10.36753/mathenot.1395051

Abstract

References

  • [1] Koufogiorgos, T., Tsichlias, C.: On the existence of a new class of contact metric manifolds. Canadian Mathematical Bulletin. 43(4), 440-447 (2000).
  • [2] Goldberg, S.I., Yano, K.: Integrability of almost cosymplectic strustures. Pacific Journal of Mathematics. 31, 373-382 (1969).
  • [3] Küpeli Erken, I.: On a classıfıcation of almost $\alpha -$ cosymplectic manifolds. Khayyam Journal of Mathematics. 5(1), 1-10 (2019).
  • [4] Olszak, Z.: On almost cosymplectic manifolds. Kodai Mathematical Journal. 4, 239-250 (1981).
  • [5] Atçeken, M.: Characterizations for an invariant submanifold of an almost $\alpha -$cosymplectic $(k,\mu ,\nu )-$ space to be totally geodesic. Filomat. 36(9), 2871-2879 (2022).
  • [6] Aktan, N., Balkan, S., Yildirim, M.: On weakly symmetries of almost Kenmotsu $(k,\mu ,\nu )-$spaces. Hacettepe Journal of Mathematics and Statistics. 42(4), 447-453 (2013).
  • [7] Atçeken, M.: Certain results on invariant submanifolds of an almost Kenmotsu $(k,\mu ,\nu )-$space. Arabian Journal of Mathematics. 10, 543-554 (2021).
  • [8] Yıldırım, M., Aktan, N.: Holomorphically planar conformal vector field on almost $\alpha $-cosymplectic $(k,\mu ,\nu )-$spaces. Fundamental Journal of Mathematics and Applications. 6(1), 35-41 (2023).
  • [9] Carriazo, A., Martin-Molina, V.: Almost cosymplectic and almost Kenmotsu $(k,\mu ,\nu )-$space. Mediterranean Journal of Mathematics. 10, 1551-1571 (2013).
  • [10] Dacko, P., Olszak, Z.: On almost cosymplectic $(k,\mu ,\nu )-$spaces. Banach Center Publications. 69(1), 211-220 (2005).
  • [11] Kim, T.W., Pak, H.K: Canonical foliations of certain classses of almost contact metric structures. Acta Mathematica Sinica, English Series. 21(4), 841-856 (2005).
  • [12] Öztürk, H., Aktan, N., Murathan, C.: Almost $\alpha -$% cosymplectic $(k,\mu ,\nu )-$spaces. ArXiv: 10077. 0527 v1.
  • [13] Koufogiorgos, T., Markellos, M., Papantoniou, V.J.: The harmonicity of the Reeb vector fields on contact 3- manifolds. Pacific Journal of Mathematics. 234(2), 325-344 (2008).
  • [14] Pokhariyal, G.P., Mishra, R.S.: Curvature tensors and their relativistic significance II. Yokohama Mathematical Journal. 19(2), 97-103 (1971).
  • [15] Pokhariyal, G.P.: Relativistic significance of curvature tensors. International Journal of Mathematics and Mathematical Sciences. 5(1), 133-139 (1982).

Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space

Year 2024, , 93 - 100, 14.04.2024
https://doi.org/10.36753/mathenot.1395051

Abstract

In this paper we present invariant submanifolds of an almost $\alpha $-cosymplectic $(k, \mu, \nu)$-space. Then, we gave some results for an invariant submanifold of an almost $\alpha $-cosymplectic $(k,\mu,\nu)$-space to be totally geodesic. As a result, we have discovered some interesting conclusions about invariant submanifolds of an almost cosymplectic $(k, \mu, \nu)$-space.

References

  • [1] Koufogiorgos, T., Tsichlias, C.: On the existence of a new class of contact metric manifolds. Canadian Mathematical Bulletin. 43(4), 440-447 (2000).
  • [2] Goldberg, S.I., Yano, K.: Integrability of almost cosymplectic strustures. Pacific Journal of Mathematics. 31, 373-382 (1969).
  • [3] Küpeli Erken, I.: On a classıfıcation of almost $\alpha -$ cosymplectic manifolds. Khayyam Journal of Mathematics. 5(1), 1-10 (2019).
  • [4] Olszak, Z.: On almost cosymplectic manifolds. Kodai Mathematical Journal. 4, 239-250 (1981).
  • [5] Atçeken, M.: Characterizations for an invariant submanifold of an almost $\alpha -$cosymplectic $(k,\mu ,\nu )-$ space to be totally geodesic. Filomat. 36(9), 2871-2879 (2022).
  • [6] Aktan, N., Balkan, S., Yildirim, M.: On weakly symmetries of almost Kenmotsu $(k,\mu ,\nu )-$spaces. Hacettepe Journal of Mathematics and Statistics. 42(4), 447-453 (2013).
  • [7] Atçeken, M.: Certain results on invariant submanifolds of an almost Kenmotsu $(k,\mu ,\nu )-$space. Arabian Journal of Mathematics. 10, 543-554 (2021).
  • [8] Yıldırım, M., Aktan, N.: Holomorphically planar conformal vector field on almost $\alpha $-cosymplectic $(k,\mu ,\nu )-$spaces. Fundamental Journal of Mathematics and Applications. 6(1), 35-41 (2023).
  • [9] Carriazo, A., Martin-Molina, V.: Almost cosymplectic and almost Kenmotsu $(k,\mu ,\nu )-$space. Mediterranean Journal of Mathematics. 10, 1551-1571 (2013).
  • [10] Dacko, P., Olszak, Z.: On almost cosymplectic $(k,\mu ,\nu )-$spaces. Banach Center Publications. 69(1), 211-220 (2005).
  • [11] Kim, T.W., Pak, H.K: Canonical foliations of certain classses of almost contact metric structures. Acta Mathematica Sinica, English Series. 21(4), 841-856 (2005).
  • [12] Öztürk, H., Aktan, N., Murathan, C.: Almost $\alpha -$% cosymplectic $(k,\mu ,\nu )-$spaces. ArXiv: 10077. 0527 v1.
  • [13] Koufogiorgos, T., Markellos, M., Papantoniou, V.J.: The harmonicity of the Reeb vector fields on contact 3- manifolds. Pacific Journal of Mathematics. 234(2), 325-344 (2008).
  • [14] Pokhariyal, G.P., Mishra, R.S.: Curvature tensors and their relativistic significance II. Yokohama Mathematical Journal. 19(2), 97-103 (1971).
  • [15] Pokhariyal, G.P.: Relativistic significance of curvature tensors. International Journal of Mathematics and Mathematical Sciences. 5(1), 133-139 (1982).
There are 15 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Pakize Uygun 0000-0001-8226-4269

Mehmet Atçeken 0000-0002-1242-4359

Tuğba Mert 0000-0001-8258-8298

Early Pub Date March 18, 2024
Publication Date April 14, 2024
Submission Date November 23, 2023
Acceptance Date January 12, 2024
Published in Issue Year 2024

Cite

APA Uygun, P., Atçeken, M., & Mert, T. (2024). Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space. Mathematical Sciences and Applications E-Notes, 12(2), 93-100. https://doi.org/10.36753/mathenot.1395051
AMA Uygun P, Atçeken M, Mert T. Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space. Math. Sci. Appl. E-Notes. April 2024;12(2):93-100. doi:10.36753/mathenot.1395051
Chicago Uygun, Pakize, Mehmet Atçeken, and Tuğba Mert. “Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space”. Mathematical Sciences and Applications E-Notes 12, no. 2 (April 2024): 93-100. https://doi.org/10.36753/mathenot.1395051.
EndNote Uygun P, Atçeken M, Mert T (April 1, 2024) Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space. Mathematical Sciences and Applications E-Notes 12 2 93–100.
IEEE P. Uygun, M. Atçeken, and T. Mert, “Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space”, Math. Sci. Appl. E-Notes, vol. 12, no. 2, pp. 93–100, 2024, doi: 10.36753/mathenot.1395051.
ISNAD Uygun, Pakize et al. “Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space”. Mathematical Sciences and Applications E-Notes 12/2 (April 2024), 93-100. https://doi.org/10.36753/mathenot.1395051.
JAMA Uygun P, Atçeken M, Mert T. Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space. Math. Sci. Appl. E-Notes. 2024;12:93–100.
MLA Uygun, Pakize et al. “Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space”. Mathematical Sciences and Applications E-Notes, vol. 12, no. 2, 2024, pp. 93-100, doi:10.36753/mathenot.1395051.
Vancouver Uygun P, Atçeken M, Mert T. Certain Results for Invariant Submanifolds of an Almost $\alpha$-Cosymplectic $(k,\mu ,\nu )$-Space. Math. Sci. Appl. E-Notes. 2024;12(2):93-100.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.