BibTex RIS Cite

GENERALIZED (f; g)-DERIVATIONS OF LATTICES

Year 2013, Volume: 1 Issue: 2, 56 - 62, 01.12.2013

Abstract

In this paper as a generalization of derivation and f -derivation ona lattice we introduce the notion of generalized (f, g)-derivation of a lattice.We give illustrative example. If the function g is equal to the function f thenthe generalized (f, g)-derivation is the f -derivation defined in [8]. Also if wechoose the function f and g the identity functions both then the derivation wedefine coincides with the derivation defined in [22]

References

  • A. J. Bell, The co-information lattice, 4th Int. Symposium on Independent ComponentvAnal- ysis and Blind Signal Seperation (ICA2003), Nara, Japan, 2003, 921–926.
  • A. Honda and M. Grabisch, Entropy of capacities on lattices and set systems, Inform. Sci. 176 (2006), no. 23, 3472–3489.
  • Asci, M., Kecilioglu O., Davvaz B. On Symmetric f bi-derivations of Lattices. J. Combin. Math. Combin. Comput. 83, (2012), pp. 243-253..
  • Asci, M., Kecilioglu O., Ceran S¸. Permuting Tri (f,g) derivations on Lattices. Ann. Fuzzy Math. Inform. (AFMI). Vol 1, No.2 (2011), pp. 189-196. .
  • Ceran, S¸. Asci, M. Symmetric bi-(σ, τ ) derivations of prime and semi prime gamma rings. Bull. Korean Math. Soc. 43 (2006), no. 1, 9–16.
  • C. Carpineto and G. Romano, Information retrieval through hybrid navigation of lattice representations, International Journal of Human-Computers Studies 45 (1996), 553–578.
  • C. Degang, Z. Wenxiu, D. Yeung, and E. C. C. Tsang, Rough approximations on a complete completely distributive lattice with applications to generalized rough sets, Inform. Sci. 176 (2006), no. 13, 1829–1848.
  • C¸ even, Y. ¨Ozt¨urk, M. A. On f-derivations of lattices. Bull. Korean Math. Soc. 45 (2008), no. 4, 701–707.
  • C¸ even, Y. Symmetric bi derivations of Lattices, Quaestiones Mathematicae, 32(2009), 1-5
  • C¸ even, Y. ¨Ozt¨urk, M. A. Some properties of symmetric bi-(σ, τ )-derivations in near-rings. Commun. Korean Math. Soc. 22 (2007), no. 4, 487–491.
  • Davey, B. A.; Priestley, H. A. Introduction to lattices and order. Second edition. Cambridge University Press, New York, 2002. xii+298 pp. ISBN: 0-521-78451-4
  • E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
  • Ferrari, Luca On derivations of lattices. Pure Math. Appl. 12 (2001), no. 4, 365–382.
  • G. Durfee, Cryptanalysis of RSA using algebraic and lattice methods, A dissertation submit- ted to the department of computer sciences and the committe on graduate studies of Stanford University (2002), 1–114.
  • G. Birkhoof, Lattice Theory, American Mathematical Society, New York, 1940.
  • H. E. Bell and L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), no. 3-4, 339–346.
  • J. Zhan and Y. L. Liu, On f-derivations of BCI-algebras, Int. J. Math. Math. Sci. (2005), no. 11, 1675–1684.
  • Ozbal, S.A, Firat, A. Symmetric f bi Derivations of Lattices. Ars Combin. 97 (2010) in press. [19] R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, Mo., 1974.
  • R. S. Sandhu, Role hierarchies and constraints for lattice-based access controls, Proceedings of the 4th Europan Symposium on Research in Computer Security, Rome, Italy, 1996, 65–79. [21] Sz´asz, G. Derivations of lattices. Acta Sci. Math. (Szeged) 37 (1975), 149–154.
  • X. L. Xin, T. Y. Li, and J. H. Lu, On derivations of lattices, Inform. Sci. 178 (2008), no. 2, 307–316. [23] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), no. 3-4, 167–176. Pamukkale University Science and Arts Faculty Department of Mathematics Kınıklı Denizli TURKEY
  • E-mail address: mustafa.asci@yahoo.com
  • E-mail address: sceran@pau.edu.tr

Year 2013, Volume: 1 Issue: 2, 56 - 62, 01.12.2013

Abstract

References

  • A. J. Bell, The co-information lattice, 4th Int. Symposium on Independent ComponentvAnal- ysis and Blind Signal Seperation (ICA2003), Nara, Japan, 2003, 921–926.
  • A. Honda and M. Grabisch, Entropy of capacities on lattices and set systems, Inform. Sci. 176 (2006), no. 23, 3472–3489.
  • Asci, M., Kecilioglu O., Davvaz B. On Symmetric f bi-derivations of Lattices. J. Combin. Math. Combin. Comput. 83, (2012), pp. 243-253..
  • Asci, M., Kecilioglu O., Ceran S¸. Permuting Tri (f,g) derivations on Lattices. Ann. Fuzzy Math. Inform. (AFMI). Vol 1, No.2 (2011), pp. 189-196. .
  • Ceran, S¸. Asci, M. Symmetric bi-(σ, τ ) derivations of prime and semi prime gamma rings. Bull. Korean Math. Soc. 43 (2006), no. 1, 9–16.
  • C. Carpineto and G. Romano, Information retrieval through hybrid navigation of lattice representations, International Journal of Human-Computers Studies 45 (1996), 553–578.
  • C. Degang, Z. Wenxiu, D. Yeung, and E. C. C. Tsang, Rough approximations on a complete completely distributive lattice with applications to generalized rough sets, Inform. Sci. 176 (2006), no. 13, 1829–1848.
  • C¸ even, Y. ¨Ozt¨urk, M. A. On f-derivations of lattices. Bull. Korean Math. Soc. 45 (2008), no. 4, 701–707.
  • C¸ even, Y. Symmetric bi derivations of Lattices, Quaestiones Mathematicae, 32(2009), 1-5
  • C¸ even, Y. ¨Ozt¨urk, M. A. Some properties of symmetric bi-(σ, τ )-derivations in near-rings. Commun. Korean Math. Soc. 22 (2007), no. 4, 487–491.
  • Davey, B. A.; Priestley, H. A. Introduction to lattices and order. Second edition. Cambridge University Press, New York, 2002. xii+298 pp. ISBN: 0-521-78451-4
  • E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
  • Ferrari, Luca On derivations of lattices. Pure Math. Appl. 12 (2001), no. 4, 365–382.
  • G. Durfee, Cryptanalysis of RSA using algebraic and lattice methods, A dissertation submit- ted to the department of computer sciences and the committe on graduate studies of Stanford University (2002), 1–114.
  • G. Birkhoof, Lattice Theory, American Mathematical Society, New York, 1940.
  • H. E. Bell and L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), no. 3-4, 339–346.
  • J. Zhan and Y. L. Liu, On f-derivations of BCI-algebras, Int. J. Math. Math. Sci. (2005), no. 11, 1675–1684.
  • Ozbal, S.A, Firat, A. Symmetric f bi Derivations of Lattices. Ars Combin. 97 (2010) in press. [19] R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, Mo., 1974.
  • R. S. Sandhu, Role hierarchies and constraints for lattice-based access controls, Proceedings of the 4th Europan Symposium on Research in Computer Security, Rome, Italy, 1996, 65–79. [21] Sz´asz, G. Derivations of lattices. Acta Sci. Math. (Szeged) 37 (1975), 149–154.
  • X. L. Xin, T. Y. Li, and J. H. Lu, On derivations of lattices, Inform. Sci. 178 (2008), no. 2, 307–316. [23] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), no. 3-4, 167–176. Pamukkale University Science and Arts Faculty Department of Mathematics Kınıklı Denizli TURKEY
  • E-mail address: mustafa.asci@yahoo.com
  • E-mail address: sceran@pau.edu.tr
There are 22 citations in total.

Details

Primary Language English
Authors

Mustafa Aşcı This is me

Şahinceran This is me

Submission Date March 9, 2015
Publication Date December 1, 2013
Published in Issue Year 2013 Volume: 1 Issue: 2

INDEXING & ABSTRACTING & ARCHIVING

34771           




20477   The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.