Research Article
BibTex RIS Cite
Year 2015, , 103 - 107, 15.05.2015
https://doi.org/10.36753/mathenot.421224

Abstract

References

  • [1] Brooks, F., Indefinite cut sets for real functions. Amer. Math. Monthly 78 (1971), 1007-1010.
  • [2] Dontchev, J., The characterization of some peculiar topological space via α− and β−sets. Acta Math. Hungar. 69 (1995), No.1-2, 67-71.
  • [3] Dontchev, J., Contra-continuous functions and strongly S-closed space. Intrnat. J. Math. Math. Sci. 19 (1996), No.2, 303-310.
  • [4] Dontchev, J., Ganster, M., Reilly, I., More on almost s-continuity. Topology Atlas, Preprint No. 212.
  • [5] Dontchev, J., Maki, H., On sg-closed sets and semi−λ−closed sets. Questions Answers Gen. Topology 15 (1997), No.2, 259-266.
  • [6] Ganster, M., Reilly, I., A decomposition of continuity. Acta Math. Hungar. 56 (1990), No.3-4, 299-301.
  • [7] Katetov, M., On real-valued functions in topological spaces. Fund. Math. 38 (1951), 85-91.
  • [8] Katetov, M., Correction to, ”On real-valued functions in topological spaces”. Fund. Math. 40 (1953), 203-205.
  • [9] Lane, E., Insertion of a continuous function. Pacific J. Math. 66 (1976), 181-190.
  • [10] Maheshwari, S. N., Prasad, R., On ROs−spaces. Portugal. Math. 34 (1975), 213-217.
  • [11] Maki, H., Generalized Λ−sets and the associated closure operator. The special Issue in commemoration of Prof. Kazuada IKEDA’s Retirement (1986), 139-146.
  • [12] Noiri, T., Super-continuity and some strong forms of continuity. Indian J. Pure Appl. Math. 15 (1984), 241-250.
  • [13] Przemski, M., A decomposition of continuity and α−continuity. Acta Math. Hungar. 61(1993), No.1-2, 93-98.

WEAK INSERTION OF A PERFECTLY CONTINUOUS FUNCTION BETWEEN TWO REAL-VALUED FUNCTIONS

Year 2015, , 103 - 107, 15.05.2015
https://doi.org/10.36753/mathenot.421224

Abstract

A sufficient condition in terms of lower cut sets are given for the
weak insertion of a perfectly continuous function between two comparable realvalued
functions on such topological spaces that Λ−sets are open. 

References

  • [1] Brooks, F., Indefinite cut sets for real functions. Amer. Math. Monthly 78 (1971), 1007-1010.
  • [2] Dontchev, J., The characterization of some peculiar topological space via α− and β−sets. Acta Math. Hungar. 69 (1995), No.1-2, 67-71.
  • [3] Dontchev, J., Contra-continuous functions and strongly S-closed space. Intrnat. J. Math. Math. Sci. 19 (1996), No.2, 303-310.
  • [4] Dontchev, J., Ganster, M., Reilly, I., More on almost s-continuity. Topology Atlas, Preprint No. 212.
  • [5] Dontchev, J., Maki, H., On sg-closed sets and semi−λ−closed sets. Questions Answers Gen. Topology 15 (1997), No.2, 259-266.
  • [6] Ganster, M., Reilly, I., A decomposition of continuity. Acta Math. Hungar. 56 (1990), No.3-4, 299-301.
  • [7] Katetov, M., On real-valued functions in topological spaces. Fund. Math. 38 (1951), 85-91.
  • [8] Katetov, M., Correction to, ”On real-valued functions in topological spaces”. Fund. Math. 40 (1953), 203-205.
  • [9] Lane, E., Insertion of a continuous function. Pacific J. Math. 66 (1976), 181-190.
  • [10] Maheshwari, S. N., Prasad, R., On ROs−spaces. Portugal. Math. 34 (1975), 213-217.
  • [11] Maki, H., Generalized Λ−sets and the associated closure operator. The special Issue in commemoration of Prof. Kazuada IKEDA’s Retirement (1986), 139-146.
  • [12] Noiri, T., Super-continuity and some strong forms of continuity. Indian J. Pure Appl. Math. 15 (1984), 241-250.
  • [13] Przemski, M., A decomposition of continuity and α−continuity. Acta Math. Hungar. 61(1993), No.1-2, 93-98.
There are 13 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Majid Mırmıran

Publication Date May 15, 2015
Submission Date June 1, 2014
Published in Issue Year 2015

Cite

APA Mırmıran, M. (2015). WEAK INSERTION OF A PERFECTLY CONTINUOUS FUNCTION BETWEEN TWO REAL-VALUED FUNCTIONS. Mathematical Sciences and Applications E-Notes, 3(1), 103-107. https://doi.org/10.36753/mathenot.421224
AMA Mırmıran M. WEAK INSERTION OF A PERFECTLY CONTINUOUS FUNCTION BETWEEN TWO REAL-VALUED FUNCTIONS. Math. Sci. Appl. E-Notes. May 2015;3(1):103-107. doi:10.36753/mathenot.421224
Chicago Mırmıran, Majid. “WEAK INSERTION OF A PERFECTLY CONTINUOUS FUNCTION BETWEEN TWO REAL-VALUED FUNCTIONS”. Mathematical Sciences and Applications E-Notes 3, no. 1 (May 2015): 103-7. https://doi.org/10.36753/mathenot.421224.
EndNote Mırmıran M (May 1, 2015) WEAK INSERTION OF A PERFECTLY CONTINUOUS FUNCTION BETWEEN TWO REAL-VALUED FUNCTIONS. Mathematical Sciences and Applications E-Notes 3 1 103–107.
IEEE M. Mırmıran, “WEAK INSERTION OF A PERFECTLY CONTINUOUS FUNCTION BETWEEN TWO REAL-VALUED FUNCTIONS”, Math. Sci. Appl. E-Notes, vol. 3, no. 1, pp. 103–107, 2015, doi: 10.36753/mathenot.421224.
ISNAD Mırmıran, Majid. “WEAK INSERTION OF A PERFECTLY CONTINUOUS FUNCTION BETWEEN TWO REAL-VALUED FUNCTIONS”. Mathematical Sciences and Applications E-Notes 3/1 (May 2015), 103-107. https://doi.org/10.36753/mathenot.421224.
JAMA Mırmıran M. WEAK INSERTION OF A PERFECTLY CONTINUOUS FUNCTION BETWEEN TWO REAL-VALUED FUNCTIONS. Math. Sci. Appl. E-Notes. 2015;3:103–107.
MLA Mırmıran, Majid. “WEAK INSERTION OF A PERFECTLY CONTINUOUS FUNCTION BETWEEN TWO REAL-VALUED FUNCTIONS”. Mathematical Sciences and Applications E-Notes, vol. 3, no. 1, 2015, pp. 103-7, doi:10.36753/mathenot.421224.
Vancouver Mırmıran M. WEAK INSERTION OF A PERFECTLY CONTINUOUS FUNCTION BETWEEN TWO REAL-VALUED FUNCTIONS. Math. Sci. Appl. E-Notes. 2015;3(1):103-7.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.