Year 2015,
, 108 - 117, 15.05.2015
Valeriu Popa
,
Alina-mihaela Patrıcıu
References
- [1] Abbas, M., Nazi, T., Radanovi´c, S., Some periodic point results in generalized metric spaces.
Appl. Math. Comput. 217 (2010), 4084-4099.
- [2] Abdeljawad, T., Karapinar, E., Tas, K., Existence and uniqueness of a common fixed point
on partial metric spaces. Appl. Math. Lett. 24 (2011), no. 11, 1900-1904.
- [3] Akkouchi, M., Popa, V., Well posedness of common fixed point problem for three mappings
under strict contractive conditions. Bul. Univ. Petrol - Gaze Ploie¸sti, Ser. Mat. Inform. Fiz.
61 (2009), no. 2, 1-10.
- [4] Akkouchi, M., Popa, V., Well posedness of a fixed point problem using G - functions. Sci.
Stud. Res. Ser. Math. Inform. 20 (2010), 5-12.
- [5] Akkouchi, M., Popa, V., Well posedness of a fixed point problem for mappings satisfying an
implicit relation. Demonstr. Math. 43 (2010), no. 4, 923-929.
- [6] Akkouchi, M., Popa, V., Well posedness of fixed point problem for hybrid pairs of mappings.
Fasc. Math. 46 (2011), 5-16.
- [7] Altun, I., Sola, F., Simsek, H., Generalized contractions on partial metric spaces. Topology
Appl. 157 (2010), no. 18, 2778-2785.
- [8] Aydi, H., Karapinar, E., Salimi, P., Some fixed point results in Gp-metric spaces. J. Appl.
Math. (2012), Article ID 891713.
- [9] Barakat, M. A., Zidan, A. M., A common fixed point theorem for weak contractive maps in
Gp - metric spaces. J. Egyptian Math. Soc. (2014), DOI: 10.1016/j.joems.2014.06.008.
- [10] Bilgili, N., Karapinar, E., Salimi, P., Fixed point theorems for generalized contractions on
Gp - metric spaces. J. Inequalities and Appl. Math.(2013), 2013:39.
- [11] Chi, R., Karapinar, E., Thanh, T. D., A generalized contraction principle in partial metric
spaces. Math. Comput. Modelling 55 (2012), no. 5 - 6, 1673-1681.
- [12] De Blasi, F. S., Myjak, J., Sur la porosit´e de l’ensemble des contractions sans point fixe.
Comptes Rend. Acad. Sci. Paris 308 (1989), 51-54.
- [13] Dhage, B. C., Generalized metric spaces and mappings with fixed point. Bull. Calcutta Math.
Soc. 84 (1992), 329-336.
- [14] Dhage, B. C., Generalized metric spaces and topological structures I. An. S¸tiint¸. Univ. Al.
I. Cuza Ia¸si, Mat. 46 (2000), 3-24.
- [15] Kadelburg, Z., Nashine, H. K., Radanovic S., Fixed point results under various contractive
conditions in partial metric spaces. RACSAM 10 (2013), 241-256.
- [16] Karapinar, E., Erhan, I. M., Fixed point theorems for operators on partial metric spaces.
Appl. Math. Lett. 24 (2011), no. 11, 1900-1904.
- [17] Kaushal, D. S., Pogey, S. S., Some results of fixed point theorems on complete G - metric
spaces. South Asian J. Math. 2 (2014), no. 4, 318-324.
- [18] Lahiri, B. K., Das, P., Well-posedness and porosity of certain classes of operators. Demonstr.
Math. 38 (2005), 170-176.
- [19] Matthews, S., Partial metric topology and applications. Proc. 8th Summer Conference on
General Topology and Applications, Ann. New York Acad. Sci. 728 (1994), 183-197.
- [20] Mohanta, S., K., Some fixed point theorems in G - metric spaces. An. S¸t. Univ. Ovidius
Constant¸a, Ser. Mat. 20 (2012), no. 1, 285-306.
- [21] Mustafa, Z., Khandagji, M., Shatanawi, W., Fixed point results on complete G - metric
spaces. St. Sci. Math. Hungarica 48 (2011), no. 3, 304-319.
- [22] Mustafa, Z., Obiedat, H., A fixed point theorem of Reich in G - metric spaces. Cubo Math.
J. 12 (2010), no. 1, 83-93.
- [23] Mustafa, Z., Obiedat, H., Awawdeh, F. Some fixed point theorem for mapping on complete
G - metric spaces. Fixed Point Theory Appl. (2008), Article ID 189870.
- [24] Mustafa, Z., Shatanawi, W., Bataineh, M., Existence of fixed point results in G - metric
spaces. Intern. J. Math. Math. Sci. (2009), Article ID 283028.
- [25] Mustafa, Z., Sims, B., Some remarks concerning D - metric spaces. Conf. Fixed Point Theory
Appl., Yokohama (2004), 184-198.
- [26] Mustafa, Z., Sims, B., A new approach to generalized metric spaces. J. Nonlinear Convex
Anal. 7 (2006), no. 2, 289-297.
- [27] Mustafa, Z., Sims, B., Fixed point theorems for contractive mappings in complete G - metric
spaces. Fixed Point Theory Appl. (2009), Article ID 917175.
- [28] Parvaneh, V., Roshan, J. R., Kadelburg, Z., On generalized weakly GP-contractive mappings
in ordered GP-metric spaces, Gulf J. Math. 1 (2013), 78-97.
- [29] Popa, V., Fixed point theorems for implicit contractive mappings. Stud. Cercet. S¸tiint¸., Ser.
Mat., Univ. Bac˘au 7 (1997), 129-133.
- [30] Popa, V., Some fixed point theorems for compatible mappings satisfying an implicit relation.
Demonstr. Math. 32 (1999), 157-163.
- [31] Popa, V., Well posedness of fixed point problem in orbitally complete metric spaces. Stud.
Cercet. S¸tiint¸., Ser. Mat., Univ. Bac˘au 16, Suppl. (2006), 209-214.
- [32] Popa, V., Well posedness of fixed point problem in compact metric spaces. Bul. Univ. Petrol
- Gaze Ploie¸sti, Ser. Mat. Inform. Fiz. 60 (2008), no. 1, 1-4.
- [33] Popa, V., A general fixed point theorem for several mappings in G - metric spaces. Sci. Stud.
Res., Ser. Math. Inform. 21 (2011), no. 1, 205-214.
- [34] Popa, V., Patriciu, A.-M., Two general fixed point theorems for pairs of weakly compatible
mappings in G - metric spaces. Novi Sad J. Math. 42 (2012), no. 2, 49-60.
- [35] Popa, V., Patriciu, A.-M., A general fixed point theorem for mappings satisfying an φ -
implicit relation in complete G - metric spaces. Gazi Univ. J. Sci. 25 (2012), no. 2, 403-408.
- [36] Popa, V., Patriciu, A.-M., A general fixed point theorem for pair of weakly compatible
mappings in G - metric spaces. J. Nonlinear Sci. Appl. 5 (2012), 151-160.
- [37] Popa, V., Patriciu, A.-M., Fixed point theorems for mappings satisfying an implicit relation
in complete G - metric spaces. Bul. Inst. Politehn. Ia¸si, Ser. Mat. Mec. Teor. Fiz. 59 (63)
(2013), 97-123.
- [38] Reich, S., Zaslavski, A. J., Well posedness of fixed point problem. Far East J. Math. Special
Volume, Part III (2001), 393-401.
- [39] Shatanawi, W., Fixed point theory for contractive mappings satisfying ϕ - maps in G -
metric spaces. Fixed Point Theory Appl. (2010), Article ID 181650.
- [40] Shatanawi, W., Common fixed point results for two self - maps in G - metric spaces. Mat.
Vesnik 65 (2013), no. 2, 143-150.
- [41] Shatanawi, W., Chauhan, S., Postolache, M., Abbas, M., Radanovi´c, S., Common fixed points
for contractive mappings in G - metric spaces. J. Adv. Math. Stud. 6 (2013), no. 1, 53-72.
- [42] Shatanawi, W., Postolache, M., Some fixed point results for a G - weak contraction in G -
metric spaces. Abstr. Appl. Anal. (2012), Article ID 815870.
- [43] Srivastava, R., Agrawal, S., Bhardwaj, R., Vardava, R., Fixed point theorems in complete G
- metric spaces. South Asian J. Math. 2 (2013), no. 2, 167-174.
- [44] Vats, R. K., Kumar, S., Sihang, V., Fixed point theorems in complete G - metric spaces.
Fasc. Math. 47 (2011), 127-139.
- [45] Vetro, C., Vetro, F., Common fixed points of mappings satisfying implicit relations in partial
metric spaces. J. Nonlinear Sci. Appl. 6 (2013), 152-161.
- [46] Zand, M. R. A., Nezhad, A. N., A generalization of partial metric spaces. Appl. Math. 24
(2010), 86-93.
WELL POSEDNESS OF FIXED POINT PROBLEM FOR MAPPINGS SATISFYING AN IMPLICIT RELATION IN Gp - METRIC SPACES
Year 2015,
, 108 - 117, 15.05.2015
Valeriu Popa
,
Alina-mihaela Patrıcıu
Abstract
The purpose of this paper is to prove a general fixed point theorem
in Gp - metric space for mappings satisfying an implicit relation. If Gp - metric
is symmetric, we prove that the fixed point problem is well posed.
References
- [1] Abbas, M., Nazi, T., Radanovi´c, S., Some periodic point results in generalized metric spaces.
Appl. Math. Comput. 217 (2010), 4084-4099.
- [2] Abdeljawad, T., Karapinar, E., Tas, K., Existence and uniqueness of a common fixed point
on partial metric spaces. Appl. Math. Lett. 24 (2011), no. 11, 1900-1904.
- [3] Akkouchi, M., Popa, V., Well posedness of common fixed point problem for three mappings
under strict contractive conditions. Bul. Univ. Petrol - Gaze Ploie¸sti, Ser. Mat. Inform. Fiz.
61 (2009), no. 2, 1-10.
- [4] Akkouchi, M., Popa, V., Well posedness of a fixed point problem using G - functions. Sci.
Stud. Res. Ser. Math. Inform. 20 (2010), 5-12.
- [5] Akkouchi, M., Popa, V., Well posedness of a fixed point problem for mappings satisfying an
implicit relation. Demonstr. Math. 43 (2010), no. 4, 923-929.
- [6] Akkouchi, M., Popa, V., Well posedness of fixed point problem for hybrid pairs of mappings.
Fasc. Math. 46 (2011), 5-16.
- [7] Altun, I., Sola, F., Simsek, H., Generalized contractions on partial metric spaces. Topology
Appl. 157 (2010), no. 18, 2778-2785.
- [8] Aydi, H., Karapinar, E., Salimi, P., Some fixed point results in Gp-metric spaces. J. Appl.
Math. (2012), Article ID 891713.
- [9] Barakat, M. A., Zidan, A. M., A common fixed point theorem for weak contractive maps in
Gp - metric spaces. J. Egyptian Math. Soc. (2014), DOI: 10.1016/j.joems.2014.06.008.
- [10] Bilgili, N., Karapinar, E., Salimi, P., Fixed point theorems for generalized contractions on
Gp - metric spaces. J. Inequalities and Appl. Math.(2013), 2013:39.
- [11] Chi, R., Karapinar, E., Thanh, T. D., A generalized contraction principle in partial metric
spaces. Math. Comput. Modelling 55 (2012), no. 5 - 6, 1673-1681.
- [12] De Blasi, F. S., Myjak, J., Sur la porosit´e de l’ensemble des contractions sans point fixe.
Comptes Rend. Acad. Sci. Paris 308 (1989), 51-54.
- [13] Dhage, B. C., Generalized metric spaces and mappings with fixed point. Bull. Calcutta Math.
Soc. 84 (1992), 329-336.
- [14] Dhage, B. C., Generalized metric spaces and topological structures I. An. S¸tiint¸. Univ. Al.
I. Cuza Ia¸si, Mat. 46 (2000), 3-24.
- [15] Kadelburg, Z., Nashine, H. K., Radanovic S., Fixed point results under various contractive
conditions in partial metric spaces. RACSAM 10 (2013), 241-256.
- [16] Karapinar, E., Erhan, I. M., Fixed point theorems for operators on partial metric spaces.
Appl. Math. Lett. 24 (2011), no. 11, 1900-1904.
- [17] Kaushal, D. S., Pogey, S. S., Some results of fixed point theorems on complete G - metric
spaces. South Asian J. Math. 2 (2014), no. 4, 318-324.
- [18] Lahiri, B. K., Das, P., Well-posedness and porosity of certain classes of operators. Demonstr.
Math. 38 (2005), 170-176.
- [19] Matthews, S., Partial metric topology and applications. Proc. 8th Summer Conference on
General Topology and Applications, Ann. New York Acad. Sci. 728 (1994), 183-197.
- [20] Mohanta, S., K., Some fixed point theorems in G - metric spaces. An. S¸t. Univ. Ovidius
Constant¸a, Ser. Mat. 20 (2012), no. 1, 285-306.
- [21] Mustafa, Z., Khandagji, M., Shatanawi, W., Fixed point results on complete G - metric
spaces. St. Sci. Math. Hungarica 48 (2011), no. 3, 304-319.
- [22] Mustafa, Z., Obiedat, H., A fixed point theorem of Reich in G - metric spaces. Cubo Math.
J. 12 (2010), no. 1, 83-93.
- [23] Mustafa, Z., Obiedat, H., Awawdeh, F. Some fixed point theorem for mapping on complete
G - metric spaces. Fixed Point Theory Appl. (2008), Article ID 189870.
- [24] Mustafa, Z., Shatanawi, W., Bataineh, M., Existence of fixed point results in G - metric
spaces. Intern. J. Math. Math. Sci. (2009), Article ID 283028.
- [25] Mustafa, Z., Sims, B., Some remarks concerning D - metric spaces. Conf. Fixed Point Theory
Appl., Yokohama (2004), 184-198.
- [26] Mustafa, Z., Sims, B., A new approach to generalized metric spaces. J. Nonlinear Convex
Anal. 7 (2006), no. 2, 289-297.
- [27] Mustafa, Z., Sims, B., Fixed point theorems for contractive mappings in complete G - metric
spaces. Fixed Point Theory Appl. (2009), Article ID 917175.
- [28] Parvaneh, V., Roshan, J. R., Kadelburg, Z., On generalized weakly GP-contractive mappings
in ordered GP-metric spaces, Gulf J. Math. 1 (2013), 78-97.
- [29] Popa, V., Fixed point theorems for implicit contractive mappings. Stud. Cercet. S¸tiint¸., Ser.
Mat., Univ. Bac˘au 7 (1997), 129-133.
- [30] Popa, V., Some fixed point theorems for compatible mappings satisfying an implicit relation.
Demonstr. Math. 32 (1999), 157-163.
- [31] Popa, V., Well posedness of fixed point problem in orbitally complete metric spaces. Stud.
Cercet. S¸tiint¸., Ser. Mat., Univ. Bac˘au 16, Suppl. (2006), 209-214.
- [32] Popa, V., Well posedness of fixed point problem in compact metric spaces. Bul. Univ. Petrol
- Gaze Ploie¸sti, Ser. Mat. Inform. Fiz. 60 (2008), no. 1, 1-4.
- [33] Popa, V., A general fixed point theorem for several mappings in G - metric spaces. Sci. Stud.
Res., Ser. Math. Inform. 21 (2011), no. 1, 205-214.
- [34] Popa, V., Patriciu, A.-M., Two general fixed point theorems for pairs of weakly compatible
mappings in G - metric spaces. Novi Sad J. Math. 42 (2012), no. 2, 49-60.
- [35] Popa, V., Patriciu, A.-M., A general fixed point theorem for mappings satisfying an φ -
implicit relation in complete G - metric spaces. Gazi Univ. J. Sci. 25 (2012), no. 2, 403-408.
- [36] Popa, V., Patriciu, A.-M., A general fixed point theorem for pair of weakly compatible
mappings in G - metric spaces. J. Nonlinear Sci. Appl. 5 (2012), 151-160.
- [37] Popa, V., Patriciu, A.-M., Fixed point theorems for mappings satisfying an implicit relation
in complete G - metric spaces. Bul. Inst. Politehn. Ia¸si, Ser. Mat. Mec. Teor. Fiz. 59 (63)
(2013), 97-123.
- [38] Reich, S., Zaslavski, A. J., Well posedness of fixed point problem. Far East J. Math. Special
Volume, Part III (2001), 393-401.
- [39] Shatanawi, W., Fixed point theory for contractive mappings satisfying ϕ - maps in G -
metric spaces. Fixed Point Theory Appl. (2010), Article ID 181650.
- [40] Shatanawi, W., Common fixed point results for two self - maps in G - metric spaces. Mat.
Vesnik 65 (2013), no. 2, 143-150.
- [41] Shatanawi, W., Chauhan, S., Postolache, M., Abbas, M., Radanovi´c, S., Common fixed points
for contractive mappings in G - metric spaces. J. Adv. Math. Stud. 6 (2013), no. 1, 53-72.
- [42] Shatanawi, W., Postolache, M., Some fixed point results for a G - weak contraction in G -
metric spaces. Abstr. Appl. Anal. (2012), Article ID 815870.
- [43] Srivastava, R., Agrawal, S., Bhardwaj, R., Vardava, R., Fixed point theorems in complete G
- metric spaces. South Asian J. Math. 2 (2013), no. 2, 167-174.
- [44] Vats, R. K., Kumar, S., Sihang, V., Fixed point theorems in complete G - metric spaces.
Fasc. Math. 47 (2011), 127-139.
- [45] Vetro, C., Vetro, F., Common fixed points of mappings satisfying implicit relations in partial
metric spaces. J. Nonlinear Sci. Appl. 6 (2013), 152-161.
- [46] Zand, M. R. A., Nezhad, A. N., A generalization of partial metric spaces. Appl. Math. 24
(2010), 86-93.