[1] Adachi, T., Kahler magnetic flow for a manifold of constant holomorphic sectional curvature. Tokyo J. Math. 18
(1995), no. 2, 473-483.
[2] Adachi, T., Kahler magnetic fields on a Kahler manifold of negative curvature. Diff. Geom. Appl. 29 (2011), 2-8.
[3] Ali, A.T., Position vectors of curves in the Galilean space G3. Matematiˇcki Vesnik. 64 (2012), no. 3, 200-210.
[4] Aydin, M.E. and Ergut, M., The equiform differential geometry of curves in 4-dimensional Galilean space G4.
Stud. Univ. Babes-Bolyai Math. 58 (2013), no. 3, 393-400.
[5] Aydin, M.E., Ogrenmis, A.O. and Ergut, M., Classification of factorable surfaces in the pseudo-Galilean space.
Glas. Mat. Ser. III. 50 (2015), no. 70, 441-451.
[6] Aydin, M.E., Mihai, A., Ogrenmis, A.O. and Ergut, M., Geometry of the solutions of localized induction
equation in the pseudo-Galilean space. Adv. Math. Phys. vol. 2015, Article ID 905978, 7 pages, 2015.
doi:10.1155/2015/905978.
[7] Bao, T. and Adachi, T., Circular trajectories on real hypersurfaces in a nonflat complex space form. J. Geom. 96
(2009), 41-55.
[8] Barros, M., Romero, A., Cabrerizo, J. L., and Fernandez, M., The Gauss-Landau-Hall problem on Riemannian
surfaces. J. Math. Phys. 46 (2005), no. 11, 1-15.
[9] Barros, M., Cabrerizo, J. L., Fernandez, M., and Romero, A., Magnetic vortex filament flows. J. Math. Phys. 48
(2007), no. 8, 1-27.
[10] Bejan, C.-L. and Dructua-Romaniuc, S.L., Walker manifolds and Killing magnetic curves. Diff. Geom. Appl. 35
(2014), 106-16.
[11] Bozkurt, Z., Gok, I., Yayli, Y. and Ekmekci, F.N., A new approach for magnetic curves in Riemannian manifolds.
J. Math. Phys. 55 (2014), no. 5, 1-12.
[12] Cabrerizo, J. L., Fernandez, M., and Gomez, J.S., On the existence of almost contact structure and the contact
magnetic field. Acta Math. Hungar. 125 (2009), no. 1-2, 191-199.
[13] Calvaruso, G., Munteanu, M.I. and Perrone, A., Killing magnetic curves in three-dimensional almost paracontact
manifolds. J. Math. Anal. Appl. 426 (2015), no. 1, 423-439.
[14] Chen, B.-Y., Geometry of Submanifolds. M. Dekker. New York, 1973.
[15] Dede, M., Tubular surfaces in Galilean space. Math. Commun. 18 (2013), no. 1, 209-217.
[16] Dructua-Romaniuc, S.L. and Munteanu, M.I., Magnetic curves corresponding to Killing magnetic fields in E^3
. J.Math. Phys. 52 (2011), no. 11, 1-11.
[17] Dructua-Romaniuc, S.L. and Munteanu, M.I., Killing magnetic curves in a Minkowski 3-space. Nonlinear Anal.,
Real World Appl. 14 (2013), no. 1, 383-396.
[18] Dructua-Romaniuc, S.L., Inoguchi, J., Munteanu, M.I. and Nistor, A.I., Magnetic curves in Sasakian and
cosymplectic manifolds. J. Nonlinear Math. Phys. 22 (2015), 428-447.
[19] Erjavec, Z., Divjak, B. and Horvat D., The general solutions of Frenet’s system in the equiform geometry of
the Galilean, pseudo-Galilean, simple isotropic and double isotropic space. Int. Math. Forum. 6 (2011), no. 17,
837-856.
[20] Kamenarovic, I., Existence theorems for ruled surfaces in the Galilean space. Rad Hazu Math. 456 (1991), no. 10,
183-196.
[21] Mohamed, J. and Munteanu, M.I., Magnetic curves on flat para-Kahler manifolds. Turkish J. Math. 39 (2015), no.
6, 963-969.
[22] Munteanu, M.I. and Nistor, A.I., Magnetic trajectories in a non-flat R^5 have order 5. In: Van der Veken, J., Van
de Woestyne, I., Verstraelen, L., Vrancken, L. (eds.) Proceedings of the Conference Pure and Applied Differential
Geometry, PADGE 2012, pp. 224–231, Shaker Verlag Aachen (2013).
[23] Munteanu, M.I. and Nistor, A.I., The classification of Killing magnetic curves in S
2 × R. J. Geom. Phys. 62 (2012),170-182.
[24] Ogrenmis, A.O., Ergut, M. and Bektas, M., On the helices in the Galilean Space G3. Iranian J. Sci. Tech. A. 31
(2007), no. A2, 177-181.
[25] Ozdemir, Z., Gok, I., Yayli, Y. and Ekmekci, F.N., Notes on magnetic curves in 3D semi-Riemannian manifolds.
Turkish J. Math. 39 (2015), no. 3, 412-426.
[26] Oztekin, H., Special Bertrand curves in 4D Galilean space. Math. Probl. Eng. vol. 2014, Article ID 318458, 7
pages, 2014. doi:10.1155/2014/318458.
[27] Pavkovic, B.J. and Kamenarovic, I., The equiform differential geometry of curves in the Galilean space G3.
Glasnik Mat. 22 (1987), no. 42, 449-457.
[28] Sunada, T., Magnetic flows on a Riemann surface. in: Proceedings of KAIST Mathematics Workshop, pp. 93–108
(1993).
Magnetic Curves Associated to Killing Vector Fields in a Galilean Space
[1] Adachi, T., Kahler magnetic flow for a manifold of constant holomorphic sectional curvature. Tokyo J. Math. 18
(1995), no. 2, 473-483.
[2] Adachi, T., Kahler magnetic fields on a Kahler manifold of negative curvature. Diff. Geom. Appl. 29 (2011), 2-8.
[3] Ali, A.T., Position vectors of curves in the Galilean space G3. Matematiˇcki Vesnik. 64 (2012), no. 3, 200-210.
[4] Aydin, M.E. and Ergut, M., The equiform differential geometry of curves in 4-dimensional Galilean space G4.
Stud. Univ. Babes-Bolyai Math. 58 (2013), no. 3, 393-400.
[5] Aydin, M.E., Ogrenmis, A.O. and Ergut, M., Classification of factorable surfaces in the pseudo-Galilean space.
Glas. Mat. Ser. III. 50 (2015), no. 70, 441-451.
[6] Aydin, M.E., Mihai, A., Ogrenmis, A.O. and Ergut, M., Geometry of the solutions of localized induction
equation in the pseudo-Galilean space. Adv. Math. Phys. vol. 2015, Article ID 905978, 7 pages, 2015.
doi:10.1155/2015/905978.
[7] Bao, T. and Adachi, T., Circular trajectories on real hypersurfaces in a nonflat complex space form. J. Geom. 96
(2009), 41-55.
[8] Barros, M., Romero, A., Cabrerizo, J. L., and Fernandez, M., The Gauss-Landau-Hall problem on Riemannian
surfaces. J. Math. Phys. 46 (2005), no. 11, 1-15.
[9] Barros, M., Cabrerizo, J. L., Fernandez, M., and Romero, A., Magnetic vortex filament flows. J. Math. Phys. 48
(2007), no. 8, 1-27.
[10] Bejan, C.-L. and Dructua-Romaniuc, S.L., Walker manifolds and Killing magnetic curves. Diff. Geom. Appl. 35
(2014), 106-16.
[11] Bozkurt, Z., Gok, I., Yayli, Y. and Ekmekci, F.N., A new approach for magnetic curves in Riemannian manifolds.
J. Math. Phys. 55 (2014), no. 5, 1-12.
[12] Cabrerizo, J. L., Fernandez, M., and Gomez, J.S., On the existence of almost contact structure and the contact
magnetic field. Acta Math. Hungar. 125 (2009), no. 1-2, 191-199.
[13] Calvaruso, G., Munteanu, M.I. and Perrone, A., Killing magnetic curves in three-dimensional almost paracontact
manifolds. J. Math. Anal. Appl. 426 (2015), no. 1, 423-439.
[14] Chen, B.-Y., Geometry of Submanifolds. M. Dekker. New York, 1973.
[15] Dede, M., Tubular surfaces in Galilean space. Math. Commun. 18 (2013), no. 1, 209-217.
[16] Dructua-Romaniuc, S.L. and Munteanu, M.I., Magnetic curves corresponding to Killing magnetic fields in E^3
. J.Math. Phys. 52 (2011), no. 11, 1-11.
[17] Dructua-Romaniuc, S.L. and Munteanu, M.I., Killing magnetic curves in a Minkowski 3-space. Nonlinear Anal.,
Real World Appl. 14 (2013), no. 1, 383-396.
[18] Dructua-Romaniuc, S.L., Inoguchi, J., Munteanu, M.I. and Nistor, A.I., Magnetic curves in Sasakian and
cosymplectic manifolds. J. Nonlinear Math. Phys. 22 (2015), 428-447.
[19] Erjavec, Z., Divjak, B. and Horvat D., The general solutions of Frenet’s system in the equiform geometry of
the Galilean, pseudo-Galilean, simple isotropic and double isotropic space. Int. Math. Forum. 6 (2011), no. 17,
837-856.
[20] Kamenarovic, I., Existence theorems for ruled surfaces in the Galilean space. Rad Hazu Math. 456 (1991), no. 10,
183-196.
[21] Mohamed, J. and Munteanu, M.I., Magnetic curves on flat para-Kahler manifolds. Turkish J. Math. 39 (2015), no.
6, 963-969.
[22] Munteanu, M.I. and Nistor, A.I., Magnetic trajectories in a non-flat R^5 have order 5. In: Van der Veken, J., Van
de Woestyne, I., Verstraelen, L., Vrancken, L. (eds.) Proceedings of the Conference Pure and Applied Differential
Geometry, PADGE 2012, pp. 224–231, Shaker Verlag Aachen (2013).
[23] Munteanu, M.I. and Nistor, A.I., The classification of Killing magnetic curves in S
2 × R. J. Geom. Phys. 62 (2012),170-182.
[24] Ogrenmis, A.O., Ergut, M. and Bektas, M., On the helices in the Galilean Space G3. Iranian J. Sci. Tech. A. 31
(2007), no. A2, 177-181.
[25] Ozdemir, Z., Gok, I., Yayli, Y. and Ekmekci, F.N., Notes on magnetic curves in 3D semi-Riemannian manifolds.
Turkish J. Math. 39 (2015), no. 3, 412-426.
[26] Oztekin, H., Special Bertrand curves in 4D Galilean space. Math. Probl. Eng. vol. 2014, Article ID 318458, 7
pages, 2014. doi:10.1155/2014/318458.
[27] Pavkovic, B.J. and Kamenarovic, I., The equiform differential geometry of curves in the Galilean space G3.
Glasnik Mat. 22 (1987), no. 42, 449-457.
[28] Sunada, T., Magnetic flows on a Riemann surface. in: Proceedings of KAIST Mathematics Workshop, pp. 93–108
(1993).
Aydın, M. E. (2016). Magnetic Curves Associated to Killing Vector Fields in a Galilean Space. Mathematical Sciences and Applications E-Notes, 4(1), 144-150. https://doi.org/10.36753/mathenot.421423
AMA
Aydın ME. Magnetic Curves Associated to Killing Vector Fields in a Galilean Space. Math. Sci. Appl. E-Notes. April 2016;4(1):144-150. doi:10.36753/mathenot.421423
Chicago
Aydın, Muhittin Evren. “Magnetic Curves Associated to Killing Vector Fields in a Galilean Space”. Mathematical Sciences and Applications E-Notes 4, no. 1 (April 2016): 144-50. https://doi.org/10.36753/mathenot.421423.
EndNote
Aydın ME (April 1, 2016) Magnetic Curves Associated to Killing Vector Fields in a Galilean Space. Mathematical Sciences and Applications E-Notes 4 1 144–150.
IEEE
M. E. Aydın, “Magnetic Curves Associated to Killing Vector Fields in a Galilean Space”, Math. Sci. Appl. E-Notes, vol. 4, no. 1, pp. 144–150, 2016, doi: 10.36753/mathenot.421423.
ISNAD
Aydın, Muhittin Evren. “Magnetic Curves Associated to Killing Vector Fields in a Galilean Space”. Mathematical Sciences and Applications E-Notes 4/1 (April 2016), 144-150. https://doi.org/10.36753/mathenot.421423.
JAMA
Aydın ME. Magnetic Curves Associated to Killing Vector Fields in a Galilean Space. Math. Sci. Appl. E-Notes. 2016;4:144–150.
MLA
Aydın, Muhittin Evren. “Magnetic Curves Associated to Killing Vector Fields in a Galilean Space”. Mathematical Sciences and Applications E-Notes, vol. 4, no. 1, 2016, pp. 144-50, doi:10.36753/mathenot.421423.
Vancouver
Aydın ME. Magnetic Curves Associated to Killing Vector Fields in a Galilean Space. Math. Sci. Appl. E-Notes. 2016;4(1):144-50.