[1] Akar, M., Yüce, S. and Kuruoglu, N., One-Parameter-Planar Motion in the Galilean Plane, International Electronic
Journal of Geometry, Volume 6 (2003), no.1, 79-88.
[3] Barnsley, M.F., and Demko, S., "Iterated function systems and the global construction of fractals", Proc. R. Soc.
London, A 399 (1985), p. 243-275.
[4] Barnsley M. F., Devaney R. L., Benoit B. M., Pietgen H. O., Saupe D., Voss R. F., (1988), “The Science of Fractal
Images”, Springer-Verlag, USA, pp. 1-20.
[5] Barnsley M.F., et al, The science of fractal images,Springer–Verlag, New York, (1988).
[6] Bedford T., The box dimension of self-affine graphs and repellers. Nonlinearity 1 (1989), 53-71.
[7] Bedford T. and Urbanski M., The box and Hausdorff dimension of self-affine sets. Ergodic Theory Dynamical
Systems 10 (1990), 627-644.
[8] Edgar G.A., Measure, Topology, and Fractal Geometry, Undergraduate Texts in Mathematics, Springer-Verlag,
(1990).
[9] Falconer K J, The Geometry of Fractal Sets, Cambridge University Press (1985).
[10] Falconer K J, Fractal Geometry, Wiley, (1990).
[11] Falconer K. J., Fractal Geometry-Mathematical Foundations and Applications (John Wiley, 2nd ed. (2003).
[12] Falconer K.J., The Haussdorf dimension of self-affine fractals, Math. Proc. Cambr. Phil. Soc. 103(1988), 339-350.
[13] Falconer K.J. and Miao J., Dimensions of self-affine fractals and multifractals generated by upper-triangular
matrices, Fractals 15(2007), 289.
[14] Hausdorff, Felix (1918), "Dimension und äusseres Mass", Mathematische Annalen 79 (1-2): 157–179.
[15] Hutchinson J.E., Fractals and self-similarity, Indiana.Univ. Math. J. 30, 1981, pp. 713–749.
[16] Lu. N., Fractal imaging, Morgan Kaufmann Publishers, (1997).
[17] Mandelbrot, B., The Fractal Geometry of Nature, (1982).
[18] Mandelbrot B. B., (1984), "The Fractal Geometry of Nature", The American Mathematical Monthly, vol. 91, no.
9, pp. 594-598.
[19] Mandelbrot B. B., (1989), "Fractal Geometry: What Is It , and What Does It Do?", Proceedings of the Royal
Society of London, vol. 423, pp. 2-16.
[20] McMullen C., The Hausdorff dimension of general Sierpinski carpets, Nagoya Math. J. 96,(1984), pp. 1–9.
[21] Peitgen H-O, Jürgens H and Saupe D 1992 a Chaos and Fractals: New Frontiers of Science (New York: Springer).
[22] Peitgen H-O, Jürgens H, Saupe D, Maletsky E M, Perciante T H and Yunker L E 1991 Fractals for the Classroom:Strategic
Activities Volume One (New York: Springer).
[24] Rooney J., On the three types of complex number and planar transformations, Cranfield Institute of Technology,
(1978).
[25] Taylor T.D., Connectivity properties of Sierpinski relatives, Fractals. 19(4), (2011), pp. 481–506.
[26] Yaglom I.M. A simple non-Eucledian geometry and its physical basis: an elementary account of Galilean
geometry and the Galilean principle of relativity. New-York: Springer-Verlag, (1979).
[27] Zhou Z.L., Hausdorff measure of Sierpinski triangle, Sci. China. Ser. A. 40(10), (1997),pp. 1016-1021.
A New Construction of the Sierpinski Triangles with Galilean Transformations
[1] Akar, M., Yüce, S. and Kuruoglu, N., One-Parameter-Planar Motion in the Galilean Plane, International Electronic
Journal of Geometry, Volume 6 (2003), no.1, 79-88.
[3] Barnsley, M.F., and Demko, S., "Iterated function systems and the global construction of fractals", Proc. R. Soc.
London, A 399 (1985), p. 243-275.
[4] Barnsley M. F., Devaney R. L., Benoit B. M., Pietgen H. O., Saupe D., Voss R. F., (1988), “The Science of Fractal
Images”, Springer-Verlag, USA, pp. 1-20.
[5] Barnsley M.F., et al, The science of fractal images,Springer–Verlag, New York, (1988).
[6] Bedford T., The box dimension of self-affine graphs and repellers. Nonlinearity 1 (1989), 53-71.
[7] Bedford T. and Urbanski M., The box and Hausdorff dimension of self-affine sets. Ergodic Theory Dynamical
Systems 10 (1990), 627-644.
[8] Edgar G.A., Measure, Topology, and Fractal Geometry, Undergraduate Texts in Mathematics, Springer-Verlag,
(1990).
[9] Falconer K J, The Geometry of Fractal Sets, Cambridge University Press (1985).
[10] Falconer K J, Fractal Geometry, Wiley, (1990).
[11] Falconer K. J., Fractal Geometry-Mathematical Foundations and Applications (John Wiley, 2nd ed. (2003).
[12] Falconer K.J., The Haussdorf dimension of self-affine fractals, Math. Proc. Cambr. Phil. Soc. 103(1988), 339-350.
[13] Falconer K.J. and Miao J., Dimensions of self-affine fractals and multifractals generated by upper-triangular
matrices, Fractals 15(2007), 289.
[14] Hausdorff, Felix (1918), "Dimension und äusseres Mass", Mathematische Annalen 79 (1-2): 157–179.
[15] Hutchinson J.E., Fractals and self-similarity, Indiana.Univ. Math. J. 30, 1981, pp. 713–749.
[16] Lu. N., Fractal imaging, Morgan Kaufmann Publishers, (1997).
[17] Mandelbrot, B., The Fractal Geometry of Nature, (1982).
[18] Mandelbrot B. B., (1984), "The Fractal Geometry of Nature", The American Mathematical Monthly, vol. 91, no.
9, pp. 594-598.
[19] Mandelbrot B. B., (1989), "Fractal Geometry: What Is It , and What Does It Do?", Proceedings of the Royal
Society of London, vol. 423, pp. 2-16.
[20] McMullen C., The Hausdorff dimension of general Sierpinski carpets, Nagoya Math. J. 96,(1984), pp. 1–9.
[21] Peitgen H-O, Jürgens H and Saupe D 1992 a Chaos and Fractals: New Frontiers of Science (New York: Springer).
[22] Peitgen H-O, Jürgens H, Saupe D, Maletsky E M, Perciante T H and Yunker L E 1991 Fractals for the Classroom:Strategic
Activities Volume One (New York: Springer).
[24] Rooney J., On the three types of complex number and planar transformations, Cranfield Institute of Technology,
(1978).
[25] Taylor T.D., Connectivity properties of Sierpinski relatives, Fractals. 19(4), (2011), pp. 481–506.
[26] Yaglom I.M. A simple non-Eucledian geometry and its physical basis: an elementary account of Galilean
geometry and the Galilean principle of relativity. New-York: Springer-Verlag, (1979).
[27] Zhou Z.L., Hausdorff measure of Sierpinski triangle, Sci. China. Ser. A. 40(10), (1997),pp. 1016-1021.
Büyükyılmaz, E. A., Yaylı, Y., & Gök, İ. (2016). A New Construction of the Sierpinski Triangles with Galilean Transformations. Mathematical Sciences and Applications E-Notes, 4(1), 151-163. https://doi.org/10.36753/mathenot.421424
AMA
Büyükyılmaz EA, Yaylı Y, Gök İ. A New Construction of the Sierpinski Triangles with Galilean Transformations. Math. Sci. Appl. E-Notes. April 2016;4(1):151-163. doi:10.36753/mathenot.421424
Chicago
Büyükyılmaz, Elif Aybike, Yusuf Yaylı, and İsmail Gök. “A New Construction of the Sierpinski Triangles With Galilean Transformations”. Mathematical Sciences and Applications E-Notes 4, no. 1 (April 2016): 151-63. https://doi.org/10.36753/mathenot.421424.
EndNote
Büyükyılmaz EA, Yaylı Y, Gök İ (April 1, 2016) A New Construction of the Sierpinski Triangles with Galilean Transformations. Mathematical Sciences and Applications E-Notes 4 1 151–163.
IEEE
E. A. Büyükyılmaz, Y. Yaylı, and İ. Gök, “A New Construction of the Sierpinski Triangles with Galilean Transformations”, Math. Sci. Appl. E-Notes, vol. 4, no. 1, pp. 151–163, 2016, doi: 10.36753/mathenot.421424.
ISNAD
Büyükyılmaz, Elif Aybike et al. “A New Construction of the Sierpinski Triangles With Galilean Transformations”. Mathematical Sciences and Applications E-Notes 4/1 (April 2016), 151-163. https://doi.org/10.36753/mathenot.421424.
JAMA
Büyükyılmaz EA, Yaylı Y, Gök İ. A New Construction of the Sierpinski Triangles with Galilean Transformations. Math. Sci. Appl. E-Notes. 2016;4:151–163.
MLA
Büyükyılmaz, Elif Aybike et al. “A New Construction of the Sierpinski Triangles With Galilean Transformations”. Mathematical Sciences and Applications E-Notes, vol. 4, no. 1, 2016, pp. 151-63, doi:10.36753/mathenot.421424.
Vancouver
Büyükyılmaz EA, Yaylı Y, Gök İ. A New Construction of the Sierpinski Triangles with Galilean Transformations. Math. Sci. Appl. E-Notes. 2016;4(1):151-63.