[2] Baronti, M. and Papini, P., Convergence of sequences of sets. In methods of functional analysis in approximation
theory, ISNM 76, Birkhauser, Basel, 1986.
[3] Beer, G., On convergence of closed sets in a metric space and distance functions. Bull. Aust. Math. Soc. 31 (1985),
421-432.
[5] Connor, J. S., The statistical and strong p-Cesàro convergence of sequences. Analysis 8 (1988), 47-63.
[6] Das, P., Sava¸s, E. and Ghosal, S. Kr., On generalizations of certain summability methods using ideals. Appl.
Math. Lett. 24 (2011), no. 9, 1509-1514.
[7] Fast, H., Sur la convergence statistique. Colloq. Math. 2 (1951), 241-244.
[8] Freedman, A. R., Sember, J. J. and Raphael, M., Some Cesaro-type summability spaces. Proc. Lond. Math. Soc. 37
(1978), no. 3, 508-520.
[9] Fridy, J. A., On statistical convergence. Analysis 5 (1985), 301-313.
[10] Fridy, J. A. and Orhan, C., Lacunary Statistical Convergence. Pacific J. Math. 160 (1993), no. 1, 43-51.
[11] Hazarika, B. and Esi, A., Statistically almost λ-convergence of sequences of sets. Eur. J. Pure Appl. Math. 6 (2013),
no. 2, 137-146.
[12] Hazarika, B. and Esi, A., On λ-asymptotically Wijsman generalized statistical convergence of sequences of sets.
Tatra Mt. Math. Publ. 56 (2013), 67-77.
[13] Kişi, Ö. and Nuray, F., A new convergence for sequences of sets. Abstr. Appl. Anal. 2013 (2013), Article ID 852796,
6 pages. doi:10.1155/2013/852796.
[14] Kişi, Ö. and Nuray, F., On S_λ^L (I)-asymptotically statistical equivalence of sequences of sets. Mathematical
Analysis 2013 (2013), Article ID 602963, 6 pages. doi:10.1155/2013/602963.
[15] Kişi, Ö., Savaş, E. and Nuray, F., On asymptotically I-lacunary statistical equivalence of sequences of sets.
(submitted for publication).
[16] Kostyrko, P., Šalát, T. and Wilezynski, W., I-Convergence. Real Anal. Exchange 26 (2000), no. 2, 669-686.
[17] Marouf, M., Asymptotic equivalence and summability. Int. J. Math. Math. Sci. 16 (1993), no. 4, 755-762.
[18] Nuray, F. and Rhoades, B. E., Statistical convergence of sequences of sets. Fasc. Math. 49 (2012), 87-99.
[20] Patterson, R.F. and Sava¸s, E., On asymptotically lacunary statistically equivalent sequences. Thai J. Math. 4
(2006), no. 2, 267-272.
[21] Sava¸s, E. and Patterson, R.F., An extension asymptotically lacunary statistically equivalent sequences. Aligarh
Bull. Math. 27 (2008), no. 2, 109-113.
[22] Sava¸s, E. and Das, P., A generalized statistical convergence via ideals. Appl. Math. Lett. 24 (2011), no. 6, 826-830.
[23] Sava¸s, E., On I-asymptotically lacunary statistical equivalent sequences. Adv. Difference Equ. 111 (2013), 7 pages.
doi:10.1186/1687-1847-2013-111.
[24] Sava¸s, E. and Gümü¸s, H., A generalization on I-asymptotically lacunary statistical equivalent sequences. J.
Inequal. Appl. 270 (2013), 9 pages. doi: 10.1186/1029-242X-2013-270.
[25] Ulusu, U., Asymptotically I-Cesàro equivalence of sequences of sets. (submitted for publication).
[26] Ulusu, U. and Kişi, Ö., I-Cesàro summability of sequences of sets. (submitted for publication).
[27] Ulusu, U. and Nuray, F., Lacunary statistical convergence of sequence of sets. Progress in Applied Mathematics 4
(2012), no. 2, 99-109.
[28] Ulusu, U. and Nuray, F., On asymptotically lacunary statistical equivalent set sequences. Journal of Mathematics
2013 (2013), Article ID 310438, 5 pages. doi: 10.1155/2013/310438.
[29] Ulusu, U. and Savaş, E., An extension asymptotically lacunary statistical equivalent set sequences. J. Inequal.
Appl. 134 (2014), 8 pages. doi: 10.1186/1029-242X-2014-134.
[30] Ulusu, U. and Dündar, E., I-lacunary statistical convergence of sequences of sets. Filomat 28 (2014), no. 8,
1567-1574.
[31] Wijsman, R. A., Convergence of sequences of convex sets, cones and functions. Bull. Amer. Math. Soc. 70 (1964),
no. 1, 186-188.
[32] Wijsman, R. A., Convergence of Sequences of Convex sets, Cones and Functions II. Trans. Amer. Math. Soc. 123
(1966), no. 1, 32-45.
A Generalization of Asymptotically I-Lacunary Statistical Equivalence of Sequences of Sets
[2] Baronti, M. and Papini, P., Convergence of sequences of sets. In methods of functional analysis in approximation
theory, ISNM 76, Birkhauser, Basel, 1986.
[3] Beer, G., On convergence of closed sets in a metric space and distance functions. Bull. Aust. Math. Soc. 31 (1985),
421-432.
[5] Connor, J. S., The statistical and strong p-Cesàro convergence of sequences. Analysis 8 (1988), 47-63.
[6] Das, P., Sava¸s, E. and Ghosal, S. Kr., On generalizations of certain summability methods using ideals. Appl.
Math. Lett. 24 (2011), no. 9, 1509-1514.
[7] Fast, H., Sur la convergence statistique. Colloq. Math. 2 (1951), 241-244.
[8] Freedman, A. R., Sember, J. J. and Raphael, M., Some Cesaro-type summability spaces. Proc. Lond. Math. Soc. 37
(1978), no. 3, 508-520.
[9] Fridy, J. A., On statistical convergence. Analysis 5 (1985), 301-313.
[10] Fridy, J. A. and Orhan, C., Lacunary Statistical Convergence. Pacific J. Math. 160 (1993), no. 1, 43-51.
[11] Hazarika, B. and Esi, A., Statistically almost λ-convergence of sequences of sets. Eur. J. Pure Appl. Math. 6 (2013),
no. 2, 137-146.
[12] Hazarika, B. and Esi, A., On λ-asymptotically Wijsman generalized statistical convergence of sequences of sets.
Tatra Mt. Math. Publ. 56 (2013), 67-77.
[13] Kişi, Ö. and Nuray, F., A new convergence for sequences of sets. Abstr. Appl. Anal. 2013 (2013), Article ID 852796,
6 pages. doi:10.1155/2013/852796.
[14] Kişi, Ö. and Nuray, F., On S_λ^L (I)-asymptotically statistical equivalence of sequences of sets. Mathematical
Analysis 2013 (2013), Article ID 602963, 6 pages. doi:10.1155/2013/602963.
[15] Kişi, Ö., Savaş, E. and Nuray, F., On asymptotically I-lacunary statistical equivalence of sequences of sets.
(submitted for publication).
[16] Kostyrko, P., Šalát, T. and Wilezynski, W., I-Convergence. Real Anal. Exchange 26 (2000), no. 2, 669-686.
[17] Marouf, M., Asymptotic equivalence and summability. Int. J. Math. Math. Sci. 16 (1993), no. 4, 755-762.
[18] Nuray, F. and Rhoades, B. E., Statistical convergence of sequences of sets. Fasc. Math. 49 (2012), 87-99.
[20] Patterson, R.F. and Sava¸s, E., On asymptotically lacunary statistically equivalent sequences. Thai J. Math. 4
(2006), no. 2, 267-272.
[21] Sava¸s, E. and Patterson, R.F., An extension asymptotically lacunary statistically equivalent sequences. Aligarh
Bull. Math. 27 (2008), no. 2, 109-113.
[22] Sava¸s, E. and Das, P., A generalized statistical convergence via ideals. Appl. Math. Lett. 24 (2011), no. 6, 826-830.
[23] Sava¸s, E., On I-asymptotically lacunary statistical equivalent sequences. Adv. Difference Equ. 111 (2013), 7 pages.
doi:10.1186/1687-1847-2013-111.
[24] Sava¸s, E. and Gümü¸s, H., A generalization on I-asymptotically lacunary statistical equivalent sequences. J.
Inequal. Appl. 270 (2013), 9 pages. doi: 10.1186/1029-242X-2013-270.
[25] Ulusu, U., Asymptotically I-Cesàro equivalence of sequences of sets. (submitted for publication).
[26] Ulusu, U. and Kişi, Ö., I-Cesàro summability of sequences of sets. (submitted for publication).
[27] Ulusu, U. and Nuray, F., Lacunary statistical convergence of sequence of sets. Progress in Applied Mathematics 4
(2012), no. 2, 99-109.
[28] Ulusu, U. and Nuray, F., On asymptotically lacunary statistical equivalent set sequences. Journal of Mathematics
2013 (2013), Article ID 310438, 5 pages. doi: 10.1155/2013/310438.
[29] Ulusu, U. and Savaş, E., An extension asymptotically lacunary statistical equivalent set sequences. J. Inequal.
Appl. 134 (2014), 8 pages. doi: 10.1186/1029-242X-2014-134.
[30] Ulusu, U. and Dündar, E., I-lacunary statistical convergence of sequences of sets. Filomat 28 (2014), no. 8,
1567-1574.
[31] Wijsman, R. A., Convergence of sequences of convex sets, cones and functions. Bull. Amer. Math. Soc. 70 (1964),
no. 1, 186-188.
[32] Wijsman, R. A., Convergence of Sequences of Convex sets, Cones and Functions II. Trans. Amer. Math. Soc. 123
(1966), no. 1, 32-45.
Ulusu, U., Nuray, F., & Savaş, E. (2016). A Generalization of Asymptotically I-Lacunary Statistical Equivalence of Sequences of Sets. Mathematical Sciences and Applications E-Notes, 4(2), 91-101. https://doi.org/10.36753/mathenot.421461
AMA
Ulusu U, Nuray F, Savaş E. A Generalization of Asymptotically I-Lacunary Statistical Equivalence of Sequences of Sets. Math. Sci. Appl. E-Notes. October 2016;4(2):91-101. doi:10.36753/mathenot.421461
Chicago
Ulusu, Ugur, Fatih Nuray, and Ekrem Savaş. “A Generalization of Asymptotically I-Lacunary Statistical Equivalence of Sequences of Sets”. Mathematical Sciences and Applications E-Notes 4, no. 2 (October 2016): 91-101. https://doi.org/10.36753/mathenot.421461.
EndNote
Ulusu U, Nuray F, Savaş E (October 1, 2016) A Generalization of Asymptotically I-Lacunary Statistical Equivalence of Sequences of Sets. Mathematical Sciences and Applications E-Notes 4 2 91–101.
IEEE
U. Ulusu, F. Nuray, and E. Savaş, “A Generalization of Asymptotically I-Lacunary Statistical Equivalence of Sequences of Sets”, Math. Sci. Appl. E-Notes, vol. 4, no. 2, pp. 91–101, 2016, doi: 10.36753/mathenot.421461.
ISNAD
Ulusu, Ugur et al. “A Generalization of Asymptotically I-Lacunary Statistical Equivalence of Sequences of Sets”. Mathematical Sciences and Applications E-Notes 4/2 (October 2016), 91-101. https://doi.org/10.36753/mathenot.421461.
JAMA
Ulusu U, Nuray F, Savaş E. A Generalization of Asymptotically I-Lacunary Statistical Equivalence of Sequences of Sets. Math. Sci. Appl. E-Notes. 2016;4:91–101.
MLA
Ulusu, Ugur et al. “A Generalization of Asymptotically I-Lacunary Statistical Equivalence of Sequences of Sets”. Mathematical Sciences and Applications E-Notes, vol. 4, no. 2, 2016, pp. 91-101, doi:10.36753/mathenot.421461.
Vancouver
Ulusu U, Nuray F, Savaş E. A Generalization of Asymptotically I-Lacunary Statistical Equivalence of Sequences of Sets. Math. Sci. Appl. E-Notes. 2016;4(2):91-101.