Research Article
BibTex RIS Cite
Year 2018, , 37 - 42, 27.04.2018
https://doi.org/10.36753/mathenot.421754

Abstract

References

  • [1] https://en.wikipedia.org/wiki/Square_root_of_a_matrix.
  • [2] https://ro.wikipedia.org/wiki/Positive-definite_matrix.
  • [3] Anghel, N., Square roots of real 2 × 2 matrices, Gaz. Mat. Ser. B 118 (2013), no. 11, 489-491.
  • [4] Anghel, N., Square roots of real 3x3 matrices vs. quartic polynomials with real zero, An. Stiin¸t. Univ. “Ovidius” Constanta, Ser. Mat. 25 (2017), no. 3, 45-58.
  • [5] Crasmareanu, M., A new method to obtain Pythagorean triple preserving matrices, Missouri J. Math. Sci. 14 (2002), no. 3, 149-158. MR 1929067(2003h:15041), Zbl 1032.15007.
  • [6] M. Crasmareanu, M. and Hre¸tcanu, Cristina-Elena, Golden differential geometry, Chaos, Solitons & Fractals 38 (2008), no. 5, 1229-1238. MR 2456523(2009k:53059).
  • [7] Reyes, E., Cruceanu, V. and Gadea, P. M., Structures of electromagnetic type on vector bundle, J. Phys. A, Math. Gen. 32 (1999), no. 20, 3805-3814. Zbl 0969.53041.
  • [8] Stakhov A. and Aranson S., The “golden” non-Euclidean geometry. Hilbert’s fourth problem, “golden” dynamical systems, and the fine-structure constant. With the assistance of Scott Olsen. Series on Analysis, Applications and Computation 7. Hackensack, NJ: World Scientific, 2017. Zbl 1351.51002.

New Aspects on Square Roots of a Real 2 x 2 Matrix and Their Geometric Applications

Year 2018, , 37 - 42, 27.04.2018
https://doi.org/10.36753/mathenot.421754

Abstract

We present a new study on the square roots of real 2 × 2 matrices with a special view towards examples,
some of them inspired by geometry. 

References

  • [1] https://en.wikipedia.org/wiki/Square_root_of_a_matrix.
  • [2] https://ro.wikipedia.org/wiki/Positive-definite_matrix.
  • [3] Anghel, N., Square roots of real 2 × 2 matrices, Gaz. Mat. Ser. B 118 (2013), no. 11, 489-491.
  • [4] Anghel, N., Square roots of real 3x3 matrices vs. quartic polynomials with real zero, An. Stiin¸t. Univ. “Ovidius” Constanta, Ser. Mat. 25 (2017), no. 3, 45-58.
  • [5] Crasmareanu, M., A new method to obtain Pythagorean triple preserving matrices, Missouri J. Math. Sci. 14 (2002), no. 3, 149-158. MR 1929067(2003h:15041), Zbl 1032.15007.
  • [6] M. Crasmareanu, M. and Hre¸tcanu, Cristina-Elena, Golden differential geometry, Chaos, Solitons & Fractals 38 (2008), no. 5, 1229-1238. MR 2456523(2009k:53059).
  • [7] Reyes, E., Cruceanu, V. and Gadea, P. M., Structures of electromagnetic type on vector bundle, J. Phys. A, Math. Gen. 32 (1999), no. 20, 3805-3814. Zbl 0969.53041.
  • [8] Stakhov A. and Aranson S., The “golden” non-Euclidean geometry. Hilbert’s fourth problem, “golden” dynamical systems, and the fine-structure constant. With the assistance of Scott Olsen. Series on Analysis, Applications and Computation 7. Hackensack, NJ: World Scientific, 2017. Zbl 1351.51002.
There are 8 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mircea Crasmareanu

Andrei Plugariu

Publication Date April 27, 2018
Submission Date November 9, 2017
Published in Issue Year 2018

Cite

APA Crasmareanu, M., & Plugariu, A. (2018). New Aspects on Square Roots of a Real 2 x 2 Matrix and Their Geometric Applications. Mathematical Sciences and Applications E-Notes, 6(1), 37-42. https://doi.org/10.36753/mathenot.421754
AMA Crasmareanu M, Plugariu A. New Aspects on Square Roots of a Real 2 x 2 Matrix and Their Geometric Applications. Math. Sci. Appl. E-Notes. April 2018;6(1):37-42. doi:10.36753/mathenot.421754
Chicago Crasmareanu, Mircea, and Andrei Plugariu. “New Aspects on Square Roots of a Real 2 X 2 Matrix and Their Geometric Applications”. Mathematical Sciences and Applications E-Notes 6, no. 1 (April 2018): 37-42. https://doi.org/10.36753/mathenot.421754.
EndNote Crasmareanu M, Plugariu A (April 1, 2018) New Aspects on Square Roots of a Real 2 x 2 Matrix and Their Geometric Applications. Mathematical Sciences and Applications E-Notes 6 1 37–42.
IEEE M. Crasmareanu and A. Plugariu, “New Aspects on Square Roots of a Real 2 x 2 Matrix and Their Geometric Applications”, Math. Sci. Appl. E-Notes, vol. 6, no. 1, pp. 37–42, 2018, doi: 10.36753/mathenot.421754.
ISNAD Crasmareanu, Mircea - Plugariu, Andrei. “New Aspects on Square Roots of a Real 2 X 2 Matrix and Their Geometric Applications”. Mathematical Sciences and Applications E-Notes 6/1 (April 2018), 37-42. https://doi.org/10.36753/mathenot.421754.
JAMA Crasmareanu M, Plugariu A. New Aspects on Square Roots of a Real 2 x 2 Matrix and Their Geometric Applications. Math. Sci. Appl. E-Notes. 2018;6:37–42.
MLA Crasmareanu, Mircea and Andrei Plugariu. “New Aspects on Square Roots of a Real 2 X 2 Matrix and Their Geometric Applications”. Mathematical Sciences and Applications E-Notes, vol. 6, no. 1, 2018, pp. 37-42, doi:10.36753/mathenot.421754.
Vancouver Crasmareanu M, Plugariu A. New Aspects on Square Roots of a Real 2 x 2 Matrix and Their Geometric Applications. Math. Sci. Appl. E-Notes. 2018;6(1):37-42.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.