[1] Aitemrar, C. A. and Senoussaoui, A., h-Admissible Foureir integral opertaors. Turk. J. Math., vol 40, 553-568,
2016.
[2] Asada, K. and Fujiwara, D., On some oscillatory transformations in L^2(R^n). Japanese J. Math., vol 4 (2), 299-361,
1978.
[3] Bekkara, B., Messirdi, B. and Senoussaoui, A., A class of generalized integral operators. Elec J. Diff. Equ., vol
2009, no.88, (2009), 1–7.
[4] Calderón, A.P. and Vaillancourt, R., On the boundedness of pseudodifferential operators. J. Math. Soc. Japan, 23,
1971, p374-378.
[5] Duistermaat, J.J., Fourier integral operators. Courant Institute Lecture Notes, New-York 1973.
[6] Egorov, Yu.V., Microlocal analysis. In Partial Differential Equations IV. Springer-Verlag Berlin Heidelberg,
p1-147, 1993.
[7] Hasanov, M., A class of unbounded Fourier integral operators. J. Math. Anal. Appl., 225, 641-651, 1998.
[8] Harrat, C. and Senoussaoui, A., On a class of h-Fourier integral operators. Demonstratio Mathematica, Vol. XLVII,
No 3, 596-607, 2014.
[9] Helffer, B., Théorie spectrale pour des opérateurs globalement elliptiques. Société Mathématiques de France,
Astérisque 112, 1984.
[10] Hörmander, L., Fourier integral operators I. Acta Math., vol 127, 1971, p79-183.
[11] Hörmander, L., The Weyl calculus of pseudodifferential operators. Comm. Pure. Appl. Math., 32 (3), p359-443,
1979.
[12] Messirdi, B. and Senoussaoui, A., On the L^2 boundedness and L^2compactness of a class of Fourier integral
operators. Elec J. Diff. Equ., vol 2006, no.26, (2006), p1–12.
[13] Messirdi, B. and Senoussaoui, A., Parametrix du problème de Cauchy C∞ muni d’un système d’ordres de
Leray-Volevic.ˆ J. for Anal and its Appl., Vol 24, (3), 581–592, 2005.
[14] Robert, D., Autour de l’approximation semi-classique. Birkäuser, 1987.
[15] Senoussaoui, A., Opérateurs h-admissibles matriciels à symbole opérateur. African Diaspora J. Math., vol 4, (1),
7-26, 2007.
[1] Aitemrar, C. A. and Senoussaoui, A., h-Admissible Foureir integral opertaors. Turk. J. Math., vol 40, 553-568,
2016.
[2] Asada, K. and Fujiwara, D., On some oscillatory transformations in L^2(R^n). Japanese J. Math., vol 4 (2), 299-361,
1978.
[3] Bekkara, B., Messirdi, B. and Senoussaoui, A., A class of generalized integral operators. Elec J. Diff. Equ., vol
2009, no.88, (2009), 1–7.
[4] Calderón, A.P. and Vaillancourt, R., On the boundedness of pseudodifferential operators. J. Math. Soc. Japan, 23,
1971, p374-378.
[5] Duistermaat, J.J., Fourier integral operators. Courant Institute Lecture Notes, New-York 1973.
[6] Egorov, Yu.V., Microlocal analysis. In Partial Differential Equations IV. Springer-Verlag Berlin Heidelberg,
p1-147, 1993.
[7] Hasanov, M., A class of unbounded Fourier integral operators. J. Math. Anal. Appl., 225, 641-651, 1998.
[8] Harrat, C. and Senoussaoui, A., On a class of h-Fourier integral operators. Demonstratio Mathematica, Vol. XLVII,
No 3, 596-607, 2014.
[9] Helffer, B., Théorie spectrale pour des opérateurs globalement elliptiques. Société Mathématiques de France,
Astérisque 112, 1984.
[10] Hörmander, L., Fourier integral operators I. Acta Math., vol 127, 1971, p79-183.
[11] Hörmander, L., The Weyl calculus of pseudodifferential operators. Comm. Pure. Appl. Math., 32 (3), p359-443,
1979.
[12] Messirdi, B. and Senoussaoui, A., On the L^2 boundedness and L^2compactness of a class of Fourier integral
operators. Elec J. Diff. Equ., vol 2006, no.26, (2006), p1–12.
[13] Messirdi, B. and Senoussaoui, A., Parametrix du problème de Cauchy C∞ muni d’un système d’ordres de
Leray-Volevic.ˆ J. for Anal and its Appl., Vol 24, (3), 581–592, 2005.
[14] Robert, D., Autour de l’approximation semi-classique. Birkäuser, 1987.
[15] Senoussaoui, A., Opérateurs h-admissibles matriciels à symbole opérateur. African Diaspora J. Math., vol 4, (1),
7-26, 2007.
Aitemrar, C. A., & Senoussaoui, A. (2018). h-Fourier Integral Operators with Complex Phase. Mathematical Sciences and Applications E-Notes, 6(1), 77-84. https://doi.org/10.36753/mathenot.421767
AMA
Aitemrar CA, Senoussaoui A. h-Fourier Integral Operators with Complex Phase. Math. Sci. Appl. E-Notes. April 2018;6(1):77-84. doi:10.36753/mathenot.421767
Chicago
Aitemrar, Chafika Amel, and Abderrahmane Senoussaoui. “H-Fourier Integral Operators With Complex Phase”. Mathematical Sciences and Applications E-Notes 6, no. 1 (April 2018): 77-84. https://doi.org/10.36753/mathenot.421767.
EndNote
Aitemrar CA, Senoussaoui A (April 1, 2018) h-Fourier Integral Operators with Complex Phase. Mathematical Sciences and Applications E-Notes 6 1 77–84.
IEEE
C. A. Aitemrar and A. Senoussaoui, “h-Fourier Integral Operators with Complex Phase”, Math. Sci. Appl. E-Notes, vol. 6, no. 1, pp. 77–84, 2018, doi: 10.36753/mathenot.421767.
ISNAD
Aitemrar, Chafika Amel - Senoussaoui, Abderrahmane. “H-Fourier Integral Operators With Complex Phase”. Mathematical Sciences and Applications E-Notes 6/1 (April 2018), 77-84. https://doi.org/10.36753/mathenot.421767.
JAMA
Aitemrar CA, Senoussaoui A. h-Fourier Integral Operators with Complex Phase. Math. Sci. Appl. E-Notes. 2018;6:77–84.
MLA
Aitemrar, Chafika Amel and Abderrahmane Senoussaoui. “H-Fourier Integral Operators With Complex Phase”. Mathematical Sciences and Applications E-Notes, vol. 6, no. 1, 2018, pp. 77-84, doi:10.36753/mathenot.421767.
Vancouver
Aitemrar CA, Senoussaoui A. h-Fourier Integral Operators with Complex Phase. Math. Sci. Appl. E-Notes. 2018;6(1):77-84.