Research Article
BibTex RIS Cite
Year 2018, , 77 - 84, 27.04.2018
https://doi.org/10.36753/mathenot.421767

Abstract

References

  • [1] Aitemrar, C. A. and Senoussaoui, A., h-Admissible Foureir integral opertaors. Turk. J. Math., vol 40, 553-568, 2016.
  • [2] Asada, K. and Fujiwara, D., On some oscillatory transformations in L^2(R^n). Japanese J. Math., vol 4 (2), 299-361, 1978.
  • [3] Bekkara, B., Messirdi, B. and Senoussaoui, A., A class of generalized integral operators. Elec J. Diff. Equ., vol 2009, no.88, (2009), 1–7.
  • [4] Calderón, A.P. and Vaillancourt, R., On the boundedness of pseudodifferential operators. J. Math. Soc. Japan, 23, 1971, p374-378.
  • [5] Duistermaat, J.J., Fourier integral operators. Courant Institute Lecture Notes, New-York 1973.
  • [6] Egorov, Yu.V., Microlocal analysis. In Partial Differential Equations IV. Springer-Verlag Berlin Heidelberg, p1-147, 1993.
  • [7] Hasanov, M., A class of unbounded Fourier integral operators. J. Math. Anal. Appl., 225, 641-651, 1998.
  • [8] Harrat, C. and Senoussaoui, A., On a class of h-Fourier integral operators. Demonstratio Mathematica, Vol. XLVII, No 3, 596-607, 2014.
  • [9] Helffer, B., Théorie spectrale pour des opérateurs globalement elliptiques. Société Mathématiques de France, Astérisque 112, 1984.
  • [10] Hörmander, L., Fourier integral operators I. Acta Math., vol 127, 1971, p79-183.
  • [11] Hörmander, L., The Weyl calculus of pseudodifferential operators. Comm. Pure. Appl. Math., 32 (3), p359-443, 1979.
  • [12] Messirdi, B. and Senoussaoui, A., On the L^2 boundedness and L^2compactness of a class of Fourier integral operators. Elec J. Diff. Equ., vol 2006, no.26, (2006), p1–12.
  • [13] Messirdi, B. and Senoussaoui, A., Parametrix du problème de Cauchy C∞ muni d’un système d’ordres de Leray-Volevic.ˆ J. for Anal and its Appl., Vol 24, (3), 581–592, 2005.
  • [14] Robert, D., Autour de l’approximation semi-classique. Birkäuser, 1987.
  • [15] Senoussaoui, A., Opérateurs h-admissibles matriciels à symbole opérateur. African Diaspora J. Math., vol 4, (1), 7-26, 2007.

h-Fourier Integral Operators with Complex Phase

Year 2018, , 77 - 84, 27.04.2018
https://doi.org/10.36753/mathenot.421767

Abstract


References

  • [1] Aitemrar, C. A. and Senoussaoui, A., h-Admissible Foureir integral opertaors. Turk. J. Math., vol 40, 553-568, 2016.
  • [2] Asada, K. and Fujiwara, D., On some oscillatory transformations in L^2(R^n). Japanese J. Math., vol 4 (2), 299-361, 1978.
  • [3] Bekkara, B., Messirdi, B. and Senoussaoui, A., A class of generalized integral operators. Elec J. Diff. Equ., vol 2009, no.88, (2009), 1–7.
  • [4] Calderón, A.P. and Vaillancourt, R., On the boundedness of pseudodifferential operators. J. Math. Soc. Japan, 23, 1971, p374-378.
  • [5] Duistermaat, J.J., Fourier integral operators. Courant Institute Lecture Notes, New-York 1973.
  • [6] Egorov, Yu.V., Microlocal analysis. In Partial Differential Equations IV. Springer-Verlag Berlin Heidelberg, p1-147, 1993.
  • [7] Hasanov, M., A class of unbounded Fourier integral operators. J. Math. Anal. Appl., 225, 641-651, 1998.
  • [8] Harrat, C. and Senoussaoui, A., On a class of h-Fourier integral operators. Demonstratio Mathematica, Vol. XLVII, No 3, 596-607, 2014.
  • [9] Helffer, B., Théorie spectrale pour des opérateurs globalement elliptiques. Société Mathématiques de France, Astérisque 112, 1984.
  • [10] Hörmander, L., Fourier integral operators I. Acta Math., vol 127, 1971, p79-183.
  • [11] Hörmander, L., The Weyl calculus of pseudodifferential operators. Comm. Pure. Appl. Math., 32 (3), p359-443, 1979.
  • [12] Messirdi, B. and Senoussaoui, A., On the L^2 boundedness and L^2compactness of a class of Fourier integral operators. Elec J. Diff. Equ., vol 2006, no.26, (2006), p1–12.
  • [13] Messirdi, B. and Senoussaoui, A., Parametrix du problème de Cauchy C∞ muni d’un système d’ordres de Leray-Volevic.ˆ J. for Anal and its Appl., Vol 24, (3), 581–592, 2005.
  • [14] Robert, D., Autour de l’approximation semi-classique. Birkäuser, 1987.
  • [15] Senoussaoui, A., Opérateurs h-admissibles matriciels à symbole opérateur. African Diaspora J. Math., vol 4, (1), 7-26, 2007.
There are 15 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Chafika Amel Aitemrar This is me

Abderrahmane Senoussaoui This is me

Publication Date April 27, 2018
Submission Date September 26, 2017
Published in Issue Year 2018

Cite

APA Aitemrar, C. A., & Senoussaoui, A. (2018). h-Fourier Integral Operators with Complex Phase. Mathematical Sciences and Applications E-Notes, 6(1), 77-84. https://doi.org/10.36753/mathenot.421767
AMA Aitemrar CA, Senoussaoui A. h-Fourier Integral Operators with Complex Phase. Math. Sci. Appl. E-Notes. April 2018;6(1):77-84. doi:10.36753/mathenot.421767
Chicago Aitemrar, Chafika Amel, and Abderrahmane Senoussaoui. “H-Fourier Integral Operators With Complex Phase”. Mathematical Sciences and Applications E-Notes 6, no. 1 (April 2018): 77-84. https://doi.org/10.36753/mathenot.421767.
EndNote Aitemrar CA, Senoussaoui A (April 1, 2018) h-Fourier Integral Operators with Complex Phase. Mathematical Sciences and Applications E-Notes 6 1 77–84.
IEEE C. A. Aitemrar and A. Senoussaoui, “h-Fourier Integral Operators with Complex Phase”, Math. Sci. Appl. E-Notes, vol. 6, no. 1, pp. 77–84, 2018, doi: 10.36753/mathenot.421767.
ISNAD Aitemrar, Chafika Amel - Senoussaoui, Abderrahmane. “H-Fourier Integral Operators With Complex Phase”. Mathematical Sciences and Applications E-Notes 6/1 (April 2018), 77-84. https://doi.org/10.36753/mathenot.421767.
JAMA Aitemrar CA, Senoussaoui A. h-Fourier Integral Operators with Complex Phase. Math. Sci. Appl. E-Notes. 2018;6:77–84.
MLA Aitemrar, Chafika Amel and Abderrahmane Senoussaoui. “H-Fourier Integral Operators With Complex Phase”. Mathematical Sciences and Applications E-Notes, vol. 6, no. 1, 2018, pp. 77-84, doi:10.36753/mathenot.421767.
Vancouver Aitemrar CA, Senoussaoui A. h-Fourier Integral Operators with Complex Phase. Math. Sci. Appl. E-Notes. 2018;6(1):77-84.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.