Research Article
BibTex RIS Cite

Some Fixed Point Results on Complex Valued Sb-Metric Spaces

Year 2018, , 10 - 21, 31.10.2018
https://doi.org/10.36753/mathenot.476779

Abstract

More recently, the notion of a complex valued Sb-metric space has been introduced and studied. In this
paper, we investigate some basic properties of this new space. We study some fixed point results on a
complete complex valued Sb-metric space. A common fixed point theorem for two self-mappings on a
complete complex valued Sb-metric space is also given.

References

  • [1] Aghajani, A., Abbas, M. J. and Roshan, R., Common fixed point of generalized weak contractive mappings in partially ordered Gb-metric spaces, Filomat, 28(2014), no.6, 1087-1101.
  • [2] An, T. V., Dung, N. V. and Hang, V. T. L., A new approach to fixed point theorems on G-metric spaces, Topology Appl., 160(2013), no.12, 1486-1493.
  • [3] Azam, A., Fisher, B. and Khan, M., Common fixed point theorems in complex valued metric spaces, Number. Funct. Anal. Optim., 32(2011), 243-253.
  • [4] Bakhtin, I. A., The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30(1989), 26-37.
  • [5] Dubey, A. K., Shukla, R. and Dubey, R. P., Some fixed point theorems in complex valued b-metric spaces, Journal of Complex Systems, (2015), Article ID: 832467, 7 pages.
  • [6] Dung, N. V., Hieu, N. T. and Radojevic, S., Fixed point theorems for g-monotone maps on partially ordered S-metric spaces, Filomat, 28(2014), no.9, 1885-1898.
  • [7] Ege, Ö., Complex valued Gb-metric spaces, J. Computational Analysis and Applications, 21(2016), no.2, 363-368.
  • [8] Mlaiki, N. M., Common fixed points in complex S-metric space, Adv. Fixed Point Theory, 4(2014), no.4, 509-524.
  • [9] Mlaiki, N. and Rohen, Y., Some coupled fixed point theorems in partially ordered Ab-metric space, J. Nonlinear Sci. Appl., 10(2017), 1731-1743.
  • [10] Mohanta, S. K., Some fixed point theorems in G-metric spaces, An. ¸ Stiint. Univ. "Ovidius" Constanta Ser. Mat., 20(2012), no.1, 285-305.
  • [11] Muhkeimer, A. A., Some common fixed point theorems in complex valued b-metric spaces, The Scientific Worl Journal, (2014) Article ID: 587825, 6 pages.
  • [12] Mustafa, Z. and Sims, B., A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2006), no.2, 289-297.
  • [13] Nashine, H. K., Imdad, M. and Hasan, M., Common fixed point theorems under rational contractions in complex valued metric spaces, J. Nonlinear Sci. Appl., 7(2014), 42-50.
  • [14] Özgür, N. Y. and Ta¸s, N., Some fixed point theorems on S-metric spaces, Mat. Vesnik, 69(2017), no.1, 39-52.
  • [15] Özgür, N. Y. and Ta¸s, N., Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25), Math. Sci., 11(2017), no.1, 7-16.
  • [16] Özgür, N. Y. and Ta¸s, N., Some generalizations of fixed point theorems on S-metric spaces, Essays in Mathematics and Its Applications in Honor of Vladimir Arnold, New York, Springer, 2016.
  • [17] Priyobarta, N., Rohen, Y. and Mlaiki, N., Complex valued Sb-metric spaces, J. Math. Anal., 8(2017), no.2, 13-24.
  • [18] Rao, K. P. R., Swamy, P. R. and Prasad, J. R., A common fixed point theorem in complex valued b-metric spaces, Bulletin of Mathematics and Statistics Research, 1(2013), no.1.
  • [19] Rohen, Y., Došenovi´c, T. and Radenovi´c, S., A note on the paper “a fixed point theorems in Sb-metric spaces”, Filomat, 31(2017), no.11, 3335-3346.
  • [20] Sedghi, S., Shobe, N. and Aliouche, A., A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64(2012), no.3, 258-266.
  • [21] Sedghi, S. and Dung, N. V., Fixed point theorems on S-metric spaces, Mat. Vesnik, 66(2014), no.1, 113-124.
  • [22] Sedghi, S., Shobkolaei, N., Roshan, J. R. and Shatanawi, W., Coupled fixed point theorems in Gb-metric spaces, Mat. Vesnik, 66(2014), no.2, 190-201.
  • [23] Sedghi, S., Gholidahneh, A., Došenovi´c, T., Esfahani, J. and Radenovi´c, S., Common fixed point of four maps in Sb-metric spaces, J. Linear Topol. Algebra, 5(2016), no.2, 93-104.
  • [24] Souayah, N. and Mlaiki, N., A fixed point theorem in Sb-metric space, J. Math. Computer Sci., 16(2016), 131-139.
  • [25] Ughade, M., Turkoglu, D., Singh, S. K. and Daheriya, R. D., Some fixed point theorems in Ab-metric space, British Journal of Mathematics & Computer Science 19(2016), no.6, 1-24.
  • [26] Verma, R. K. and Pathak, H. K., Common fixed point theorems using property (E:A) in complex-valued metric spaces, Thai J. Math., 11(2013), no.2, 347-355.
Year 2018, , 10 - 21, 31.10.2018
https://doi.org/10.36753/mathenot.476779

Abstract

References

  • [1] Aghajani, A., Abbas, M. J. and Roshan, R., Common fixed point of generalized weak contractive mappings in partially ordered Gb-metric spaces, Filomat, 28(2014), no.6, 1087-1101.
  • [2] An, T. V., Dung, N. V. and Hang, V. T. L., A new approach to fixed point theorems on G-metric spaces, Topology Appl., 160(2013), no.12, 1486-1493.
  • [3] Azam, A., Fisher, B. and Khan, M., Common fixed point theorems in complex valued metric spaces, Number. Funct. Anal. Optim., 32(2011), 243-253.
  • [4] Bakhtin, I. A., The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30(1989), 26-37.
  • [5] Dubey, A. K., Shukla, R. and Dubey, R. P., Some fixed point theorems in complex valued b-metric spaces, Journal of Complex Systems, (2015), Article ID: 832467, 7 pages.
  • [6] Dung, N. V., Hieu, N. T. and Radojevic, S., Fixed point theorems for g-monotone maps on partially ordered S-metric spaces, Filomat, 28(2014), no.9, 1885-1898.
  • [7] Ege, Ö., Complex valued Gb-metric spaces, J. Computational Analysis and Applications, 21(2016), no.2, 363-368.
  • [8] Mlaiki, N. M., Common fixed points in complex S-metric space, Adv. Fixed Point Theory, 4(2014), no.4, 509-524.
  • [9] Mlaiki, N. and Rohen, Y., Some coupled fixed point theorems in partially ordered Ab-metric space, J. Nonlinear Sci. Appl., 10(2017), 1731-1743.
  • [10] Mohanta, S. K., Some fixed point theorems in G-metric spaces, An. ¸ Stiint. Univ. "Ovidius" Constanta Ser. Mat., 20(2012), no.1, 285-305.
  • [11] Muhkeimer, A. A., Some common fixed point theorems in complex valued b-metric spaces, The Scientific Worl Journal, (2014) Article ID: 587825, 6 pages.
  • [12] Mustafa, Z. and Sims, B., A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2006), no.2, 289-297.
  • [13] Nashine, H. K., Imdad, M. and Hasan, M., Common fixed point theorems under rational contractions in complex valued metric spaces, J. Nonlinear Sci. Appl., 7(2014), 42-50.
  • [14] Özgür, N. Y. and Ta¸s, N., Some fixed point theorems on S-metric spaces, Mat. Vesnik, 69(2017), no.1, 39-52.
  • [15] Özgür, N. Y. and Ta¸s, N., Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25), Math. Sci., 11(2017), no.1, 7-16.
  • [16] Özgür, N. Y. and Ta¸s, N., Some generalizations of fixed point theorems on S-metric spaces, Essays in Mathematics and Its Applications in Honor of Vladimir Arnold, New York, Springer, 2016.
  • [17] Priyobarta, N., Rohen, Y. and Mlaiki, N., Complex valued Sb-metric spaces, J. Math. Anal., 8(2017), no.2, 13-24.
  • [18] Rao, K. P. R., Swamy, P. R. and Prasad, J. R., A common fixed point theorem in complex valued b-metric spaces, Bulletin of Mathematics and Statistics Research, 1(2013), no.1.
  • [19] Rohen, Y., Došenovi´c, T. and Radenovi´c, S., A note on the paper “a fixed point theorems in Sb-metric spaces”, Filomat, 31(2017), no.11, 3335-3346.
  • [20] Sedghi, S., Shobe, N. and Aliouche, A., A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64(2012), no.3, 258-266.
  • [21] Sedghi, S. and Dung, N. V., Fixed point theorems on S-metric spaces, Mat. Vesnik, 66(2014), no.1, 113-124.
  • [22] Sedghi, S., Shobkolaei, N., Roshan, J. R. and Shatanawi, W., Coupled fixed point theorems in Gb-metric spaces, Mat. Vesnik, 66(2014), no.2, 190-201.
  • [23] Sedghi, S., Gholidahneh, A., Došenovi´c, T., Esfahani, J. and Radenovi´c, S., Common fixed point of four maps in Sb-metric spaces, J. Linear Topol. Algebra, 5(2016), no.2, 93-104.
  • [24] Souayah, N. and Mlaiki, N., A fixed point theorem in Sb-metric space, J. Math. Computer Sci., 16(2016), 131-139.
  • [25] Ughade, M., Turkoglu, D., Singh, S. K. and Daheriya, R. D., Some fixed point theorems in Ab-metric space, British Journal of Mathematics & Computer Science 19(2016), no.6, 1-24.
  • [26] Verma, R. K. and Pathak, H. K., Common fixed point theorems using property (E:A) in complex-valued metric spaces, Thai J. Math., 11(2013), no.2, 347-355.
There are 26 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Nihal Taş This is me 0000-0002-4535-4019

Nihal Yılmaz Özgür This is me 0000-0002-8152-1830

Nabil Mlaiki This is me 0000-0002-7986-886X

Publication Date October 31, 2018
Submission Date December 21, 2017
Acceptance Date June 4, 2018
Published in Issue Year 2018

Cite

APA Taş, N., Özgür, N. Y., & Mlaiki, N. (2018). Some Fixed Point Results on Complex Valued Sb-Metric Spaces. Mathematical Sciences and Applications E-Notes, 6(2), 10-21. https://doi.org/10.36753/mathenot.476779
AMA Taş N, Özgür NY, Mlaiki N. Some Fixed Point Results on Complex Valued Sb-Metric Spaces. Math. Sci. Appl. E-Notes. October 2018;6(2):10-21. doi:10.36753/mathenot.476779
Chicago Taş, Nihal, Nihal Yılmaz Özgür, and Nabil Mlaiki. “Some Fixed Point Results on Complex Valued Sb-Metric Spaces”. Mathematical Sciences and Applications E-Notes 6, no. 2 (October 2018): 10-21. https://doi.org/10.36753/mathenot.476779.
EndNote Taş N, Özgür NY, Mlaiki N (October 1, 2018) Some Fixed Point Results on Complex Valued Sb-Metric Spaces. Mathematical Sciences and Applications E-Notes 6 2 10–21.
IEEE N. Taş, N. Y. Özgür, and N. Mlaiki, “Some Fixed Point Results on Complex Valued Sb-Metric Spaces”, Math. Sci. Appl. E-Notes, vol. 6, no. 2, pp. 10–21, 2018, doi: 10.36753/mathenot.476779.
ISNAD Taş, Nihal et al. “Some Fixed Point Results on Complex Valued Sb-Metric Spaces”. Mathematical Sciences and Applications E-Notes 6/2 (October 2018), 10-21. https://doi.org/10.36753/mathenot.476779.
JAMA Taş N, Özgür NY, Mlaiki N. Some Fixed Point Results on Complex Valued Sb-Metric Spaces. Math. Sci. Appl. E-Notes. 2018;6:10–21.
MLA Taş, Nihal et al. “Some Fixed Point Results on Complex Valued Sb-Metric Spaces”. Mathematical Sciences and Applications E-Notes, vol. 6, no. 2, 2018, pp. 10-21, doi:10.36753/mathenot.476779.
Vancouver Taş N, Özgür NY, Mlaiki N. Some Fixed Point Results on Complex Valued Sb-Metric Spaces. Math. Sci. Appl. E-Notes. 2018;6(2):10-21.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.