[1] Adams, W. and Loustaunau, P., An Introduction to Groebner Bases, American Mathematical Society, Vol.3,
1994.
[2] Borges-quintana, M., Borges-Trenard, M., Fitzpatrick P. and Martinez-Moro E., Groebner bases and combinatorics
for binary codes, Applicable Algebra in Engineering Communication and Computing - AAECC 19(2008),
393-411.
[3] Buchberger, B., An Algorithm for Finding the Basis Elements of the Residue Class Ring Modulo a Zero
Dimensional Polynomial Ideal, PhD thesis, University of Innsbruck, 1965.
[4] Cooper, A., Towards a new method of decoding Algebraic codes using Groebner bases, Transactions 10th Army
Conf. Appl. Math. Comp. 93(1992), 293-297.
[5] Cox, D., Little J. and O’Shea D., Ideals, Varieties, and Algorithms, Springer, 1996.
[6] Cox, D., Little J. and O’Shea D., Using Algebraic Geometry, Springer, 1998.
[7] Drton, M., Sturmfels B., Sullivan S., Lectures on Algebraic Statistics, Birkhäuser, Basel, 2009.
[8] Dück, N. and Zimmermann, K.H., Gröbner bases for perfect binary linear codes, International Journal of Pure
and Applied Mathematics 91(2014), no.2, 155-167.
[9] Dück, N. and Zimmermann, K.H., Standard Bases for binary Linear Codes, International Journal of Pure and
Applied Mathematics 80(2012), no.3, 315-329.
[10] Dück, N. and Zimmermann, K.H., Universal Groebner bases for Binary Linear Code, International Journal of
Pure and Applied Mathematics 86(2013), no.2, 345-358.
[11] Greuel, G.M. and Pfister, G., A Singular Introduction to Commutative Algebra, Springer-Verlag, Berlin, 2002.
[12] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann.Math.
79(1964), 109-326.
[13] Mora, T., Pfister, G. and Traverso, C., An introduction to the tangent cone algorithm, Advances in Computing
Research 6(1992), 199-270.
[14] Sala, M., Mora, T., Perret, L., Sakata, S., and Traverso, C., Groebner Bases, Coding, and Cryptography, Springer,
Berlin 2009.
[15] Saleemi, M. and Zimmermann, K.H., Groebner Bases for Linear Codes, International Journal of Pure and Applied
Mathematics 62(2010), no.4, 481-491.
[16] Saleemi, M. and Zimmermann, K.H., Linear Codes as Binomial Ideals, International Journal of Pure and Applied
Mathematics 61(2010), no.2, 147-156.
[1] Adams, W. and Loustaunau, P., An Introduction to Groebner Bases, American Mathematical Society, Vol.3,
1994.
[2] Borges-quintana, M., Borges-Trenard, M., Fitzpatrick P. and Martinez-Moro E., Groebner bases and combinatorics
for binary codes, Applicable Algebra in Engineering Communication and Computing - AAECC 19(2008),
393-411.
[3] Buchberger, B., An Algorithm for Finding the Basis Elements of the Residue Class Ring Modulo a Zero
Dimensional Polynomial Ideal, PhD thesis, University of Innsbruck, 1965.
[4] Cooper, A., Towards a new method of decoding Algebraic codes using Groebner bases, Transactions 10th Army
Conf. Appl. Math. Comp. 93(1992), 293-297.
[5] Cox, D., Little J. and O’Shea D., Ideals, Varieties, and Algorithms, Springer, 1996.
[6] Cox, D., Little J. and O’Shea D., Using Algebraic Geometry, Springer, 1998.
[7] Drton, M., Sturmfels B., Sullivan S., Lectures on Algebraic Statistics, Birkhäuser, Basel, 2009.
[8] Dück, N. and Zimmermann, K.H., Gröbner bases for perfect binary linear codes, International Journal of Pure
and Applied Mathematics 91(2014), no.2, 155-167.
[9] Dück, N. and Zimmermann, K.H., Standard Bases for binary Linear Codes, International Journal of Pure and
Applied Mathematics 80(2012), no.3, 315-329.
[10] Dück, N. and Zimmermann, K.H., Universal Groebner bases for Binary Linear Code, International Journal of
Pure and Applied Mathematics 86(2013), no.2, 345-358.
[11] Greuel, G.M. and Pfister, G., A Singular Introduction to Commutative Algebra, Springer-Verlag, Berlin, 2002.
[12] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann.Math.
79(1964), 109-326.
[13] Mora, T., Pfister, G. and Traverso, C., An introduction to the tangent cone algorithm, Advances in Computing
Research 6(1992), 199-270.
[14] Sala, M., Mora, T., Perret, L., Sakata, S., and Traverso, C., Groebner Bases, Coding, and Cryptography, Springer,
Berlin 2009.
[15] Saleemi, M. and Zimmermann, K.H., Groebner Bases for Linear Codes, International Journal of Pure and Applied
Mathematics 62(2010), no.4, 481-491.
[16] Saleemi, M. and Zimmermann, K.H., Linear Codes as Binomial Ideals, International Journal of Pure and Applied
Mathematics 61(2010), no.2, 147-156.
There are 16 citations in total.
Details
Primary Language
English
Journal Section
Articles
Authors
Jean Jacques Ferdinand Randriamiarampanahy
This is me
Randriamiarampanahy, J. J. F., Andriatahiny, H., & Rabeherimanana, T. J. (2019). Standard Bases for Linear Codes over Prime Fields. Mathematical Sciences and Applications E-Notes, 7(1), 94-101. https://doi.org/10.36753/mathenot.559263
AMA
Randriamiarampanahy JJF, Andriatahiny H, Rabeherimanana TJ. Standard Bases for Linear Codes over Prime Fields. Math. Sci. Appl. E-Notes. April 2019;7(1):94-101. doi:10.36753/mathenot.559263
Chicago
Randriamiarampanahy, Jean Jacques Ferdinand, Harinaivo Andriatahiny, and Toussaint Joseph Rabeherimanana. “Standard Bases for Linear Codes over Prime Fields”. Mathematical Sciences and Applications E-Notes 7, no. 1 (April 2019): 94-101. https://doi.org/10.36753/mathenot.559263.
EndNote
Randriamiarampanahy JJF, Andriatahiny H, Rabeherimanana TJ (April 1, 2019) Standard Bases for Linear Codes over Prime Fields. Mathematical Sciences and Applications E-Notes 7 1 94–101.
IEEE
J. J. F. Randriamiarampanahy, H. Andriatahiny, and T. J. Rabeherimanana, “Standard Bases for Linear Codes over Prime Fields”, Math. Sci. Appl. E-Notes, vol. 7, no. 1, pp. 94–101, 2019, doi: 10.36753/mathenot.559263.
ISNAD
Randriamiarampanahy, Jean Jacques Ferdinand et al. “Standard Bases for Linear Codes over Prime Fields”. Mathematical Sciences and Applications E-Notes 7/1 (April 2019), 94-101. https://doi.org/10.36753/mathenot.559263.
JAMA
Randriamiarampanahy JJF, Andriatahiny H, Rabeherimanana TJ. Standard Bases for Linear Codes over Prime Fields. Math. Sci. Appl. E-Notes. 2019;7:94–101.
MLA
Randriamiarampanahy, Jean Jacques Ferdinand et al. “Standard Bases for Linear Codes over Prime Fields”. Mathematical Sciences and Applications E-Notes, vol. 7, no. 1, 2019, pp. 94-101, doi:10.36753/mathenot.559263.
Vancouver
Randriamiarampanahy JJF, Andriatahiny H, Rabeherimanana TJ. Standard Bases for Linear Codes over Prime Fields. Math. Sci. Appl. E-Notes. 2019;7(1):94-101.