Research Article
BibTex RIS Cite
Year 2020, , 65 - 70, 15.10.2020
https://doi.org/10.36753/mathenot.631172

Abstract

References

  • [1] Beidar, K. I.: Rings of quotients of semiprime rings. Vestnik Moskov. Univ. Ser I Math. Meh. (Engl. Transl:. Moscow Univ. Math. Bull.). 33,36-42 (1978).
  • [2] Brešar, M.: On the distance of the composition of the two derivations to be the generalized derivations. Glasgow Math. J. 33 (1), 89-93 (1991).
  • [3] Chuang, C. L.: GPIs having coefficients in Utumi quotient rings. Proc. Amer. Math. Soc. 103, 723-728 (1988).
  • [4] Daif, M. N. and Bell, H. E: Remarks on derivations on semiprime rings. Int. J. Math. & Math. Sci. 15 (1) , 205-206 (1992).
  • [5] Filippis, V. De: Generalized derivations in prime rings and noncommutative Banach algebras. Bull. Korean Math. Soc. 45, 621-629 (2008).
  • [6] Filippis, V. De and Huang, S.: Generalized derivations on semi prime rings. Bull. Korean Math. Soc. 48 (6), 1253-1259 (2011).
  • [7] Dhara, B.: Remarks on generalized derivations in prime and semiprime rings. Int. J. Math. & Math. Sc. 2010, Article ID 646587, 6 pages.
  • [8] Kharchenko, V. K.: Differential identity of prime rings. Algebra and Logic. 17, 155-168 (1978).
  • [9] Lee, T. K.: Semiprime rings with differential identities. Bull. Inst. Math. Acad. Sinica, 20 (1) , 27-38 (1992).
  • [10] Lee, T. K.: Generalized derivations of left faithful rings. Comm. Algebra, 27 (8), 4057-4073 (1999).
  • [11] Park, K. H.: On derivations in noncommutative semiprime rings and Banach algebras. Bull. Korean Math. Soc. 42, 671-678 (2005).
  • [12] Quadri, M. A., Khan, M. S. and Rehman, N.: Generalized derivations and commutativity of prime rings. Indian J. Pure Appl. Math. 34 (9),1393-1396 (2003).
  • [13] Sinclair, A. M.: Continuous derivations on Banach algebras. Proc. Amer. Math. Soc. 20, 166-170 (1969).
  • [14] Singer, I. M. and Wermer, J.: Derivations on commutative normed algebras. Math. Ann. 129, 260–264 (1955).
  • [15] Johnson, B. E. and Sinclair, A. M.: Continuity of derivations and a problem of Kaplansky. Amer. J. Math. 90, 1067-1073 (1968).
  • [16] Chuang, C. L. and Lee, T. K.: Rings with annihilator conditions on multilinear polynomials. Chinese J. Math. 177-185 (1996).
  • [17] Erickson, T. S. and Martindale III, W. S. and Osborn, J. M.: Prime nonassociative algebras. Pacific J. Math. 60, 49-63 (1975).
  • [18] Martindale III, W. S.: Prime rings satisfying a generalized polynomial identity. J. Algebra. 12, 576-584 (1969).
  • [19] Jacobson, N.: Structure of rings. Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
  • [20] Bell, H. E.and Martindale III, W. S.: Centralizing mappings of semiprime rings. Canad. Math. Bull. 30, 92-101 (1987).

Annihilator of Generalized Derivations with Power Values in Rings and Algebras

Year 2020, , 65 - 70, 15.10.2020
https://doi.org/10.36753/mathenot.631172

Abstract

Let $\mathcal{F}, \mathcal{G}$ be two  generalized derivations of prime ring $\mathcal{R}$ with characteristic different from 2 with associated derivations $d_1$ and $d_2$ respectively. We use the symbols  $\mathcal{C}=\mathcal{Z(U)}$ and  $\mathcal{U}$ to denote the  the extended centroid of $R$ and Utumi ring of quotient of $\mathcal{R}$ respectively. Let $0\neq a \in \mathcal{R}$ and $\mathcal{F}$ and $\mathcal{G}$ satisfy $a\{(\mathcal{F}(xy)+\mathcal{G}(yx))^m-[x,y]^n\}=0$ for all $x, y\in \mathcal{J}$, a nonzero ideal, where $m$ and $n$ are natural numbers. Then either $\mathcal{R}$ is commutative or there exists $c$, $b\in \mathcal{U}$ such that $\mathcal{F}$(x) = cx and $\mathcal{G}$(x) = bx for all x ∈ R. 

References

  • [1] Beidar, K. I.: Rings of quotients of semiprime rings. Vestnik Moskov. Univ. Ser I Math. Meh. (Engl. Transl:. Moscow Univ. Math. Bull.). 33,36-42 (1978).
  • [2] Brešar, M.: On the distance of the composition of the two derivations to be the generalized derivations. Glasgow Math. J. 33 (1), 89-93 (1991).
  • [3] Chuang, C. L.: GPIs having coefficients in Utumi quotient rings. Proc. Amer. Math. Soc. 103, 723-728 (1988).
  • [4] Daif, M. N. and Bell, H. E: Remarks on derivations on semiprime rings. Int. J. Math. & Math. Sci. 15 (1) , 205-206 (1992).
  • [5] Filippis, V. De: Generalized derivations in prime rings and noncommutative Banach algebras. Bull. Korean Math. Soc. 45, 621-629 (2008).
  • [6] Filippis, V. De and Huang, S.: Generalized derivations on semi prime rings. Bull. Korean Math. Soc. 48 (6), 1253-1259 (2011).
  • [7] Dhara, B.: Remarks on generalized derivations in prime and semiprime rings. Int. J. Math. & Math. Sc. 2010, Article ID 646587, 6 pages.
  • [8] Kharchenko, V. K.: Differential identity of prime rings. Algebra and Logic. 17, 155-168 (1978).
  • [9] Lee, T. K.: Semiprime rings with differential identities. Bull. Inst. Math. Acad. Sinica, 20 (1) , 27-38 (1992).
  • [10] Lee, T. K.: Generalized derivations of left faithful rings. Comm. Algebra, 27 (8), 4057-4073 (1999).
  • [11] Park, K. H.: On derivations in noncommutative semiprime rings and Banach algebras. Bull. Korean Math. Soc. 42, 671-678 (2005).
  • [12] Quadri, M. A., Khan, M. S. and Rehman, N.: Generalized derivations and commutativity of prime rings. Indian J. Pure Appl. Math. 34 (9),1393-1396 (2003).
  • [13] Sinclair, A. M.: Continuous derivations on Banach algebras. Proc. Amer. Math. Soc. 20, 166-170 (1969).
  • [14] Singer, I. M. and Wermer, J.: Derivations on commutative normed algebras. Math. Ann. 129, 260–264 (1955).
  • [15] Johnson, B. E. and Sinclair, A. M.: Continuity of derivations and a problem of Kaplansky. Amer. J. Math. 90, 1067-1073 (1968).
  • [16] Chuang, C. L. and Lee, T. K.: Rings with annihilator conditions on multilinear polynomials. Chinese J. Math. 177-185 (1996).
  • [17] Erickson, T. S. and Martindale III, W. S. and Osborn, J. M.: Prime nonassociative algebras. Pacific J. Math. 60, 49-63 (1975).
  • [18] Martindale III, W. S.: Prime rings satisfying a generalized polynomial identity. J. Algebra. 12, 576-584 (1969).
  • [19] Jacobson, N.: Structure of rings. Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
  • [20] Bell, H. E.and Martindale III, W. S.: Centralizing mappings of semiprime rings. Canad. Math. Bull. 30, 92-101 (1987).
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Md Hamidur Rahaman 0000-0003-1822-7863

Publication Date October 15, 2020
Submission Date October 9, 2019
Acceptance Date May 23, 2020
Published in Issue Year 2020

Cite

APA Rahaman, M. H. (2020). Annihilator of Generalized Derivations with Power Values in Rings and Algebras. Mathematical Sciences and Applications E-Notes, 8(2), 65-70. https://doi.org/10.36753/mathenot.631172
AMA Rahaman MH. Annihilator of Generalized Derivations with Power Values in Rings and Algebras. Math. Sci. Appl. E-Notes. October 2020;8(2):65-70. doi:10.36753/mathenot.631172
Chicago Rahaman, Md Hamidur. “Annihilator of Generalized Derivations With Power Values in Rings and Algebras”. Mathematical Sciences and Applications E-Notes 8, no. 2 (October 2020): 65-70. https://doi.org/10.36753/mathenot.631172.
EndNote Rahaman MH (October 1, 2020) Annihilator of Generalized Derivations with Power Values in Rings and Algebras. Mathematical Sciences and Applications E-Notes 8 2 65–70.
IEEE M. H. Rahaman, “Annihilator of Generalized Derivations with Power Values in Rings and Algebras”, Math. Sci. Appl. E-Notes, vol. 8, no. 2, pp. 65–70, 2020, doi: 10.36753/mathenot.631172.
ISNAD Rahaman, Md Hamidur. “Annihilator of Generalized Derivations With Power Values in Rings and Algebras”. Mathematical Sciences and Applications E-Notes 8/2 (October 2020), 65-70. https://doi.org/10.36753/mathenot.631172.
JAMA Rahaman MH. Annihilator of Generalized Derivations with Power Values in Rings and Algebras. Math. Sci. Appl. E-Notes. 2020;8:65–70.
MLA Rahaman, Md Hamidur. “Annihilator of Generalized Derivations With Power Values in Rings and Algebras”. Mathematical Sciences and Applications E-Notes, vol. 8, no. 2, 2020, pp. 65-70, doi:10.36753/mathenot.631172.
Vancouver Rahaman MH. Annihilator of Generalized Derivations with Power Values in Rings and Algebras. Math. Sci. Appl. E-Notes. 2020;8(2):65-70.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.