Research Article
BibTex RIS Cite
Year 2020, , 86 - 95, 15.10.2020
https://doi.org/10.36753/mathenot.691956

Abstract

References

  • [1] Baez, J.C., Baratin, A., Freidel, L. and Wise, D.K.: Infinite-Dimensional Representations of 2-Groups. Mem. Am. Math. Soc. 219, (1032) (2012).
  • [2] Baez, J.C., Lauda, A.D.: Higher Dimensional Algebra V: 2-Groups. Theory Appl. Categ. 12, 423–491 (2004).
  • [3] Brown, R.: Topology and Groupoids. BookSurge LLC, North Carolina (2006).
  • [4] Brown, R, Spencer, C.B.: Double groupoids and crossed modules. Cahiers de Topologie et Géométrie Différentielle Catégoriques 17 (4), 343-362 (1976).
  • [5] Brown, R., Spencer, C.B.: G-groupoids, crossed modules and the fundamental groupoid of a topological group. Mathematical Sciences and Applications E-Notes. Indagat. Math. 79 (4), 296-302 (1976).
  • [6] Brown, R., Higgins, P. J. and Sivera, R.: Nonabelian Algebraic Topology: Filtered spaces, crossed complexes, cubical homotopy groupoids. European Mathematical Society Tracts in Mathematics 15 (2011).
  • [7] Brown, R., Mucuk, O.: Covering groups of non-connected topological groups revisited. Math. Proc. Camb. Phil. Soc. 115, 97–110 (1994).
  • [8] Ehresmann, C.: Catégories doubles et catégories structurées. C. R. Acad. Sci. Paris 256, 1198-1201 (1963).
  • [9] Ehresmann, C.: Catégories structurées. Ann. Sci. Ec. Norm. Super. 80, 349-425 (1963b).
  • [10] Huebschmann, J.: Crossed n-fold extensions of groups and cohomology. Comment. Math. Helvetici. 55: 302-314 (1980).
  • [11] Kerler, T. and Lyubashenko, V.V.: Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners. Springer-Verlag. Berlin, Heidelberg, (2001).
  • [12] Loday, J.-L.: Cohomologie et groupes de Steinberg relatifs. J. Algebra. 54 178-202 (1978).
  • [13] Maclane, S.: Categories for the Working Mathematician, Graduate Text in Mathematics. 5, Springer-Verlag. New York (1971).
  • [14] Mucuk, O., Demir S.: Normality and quotient in crossed modules over groupoids and double groupoids. Turk J Math, 42, 2336 – 2347 (2018).
  • [15] Patchkoria, A.: Crossed Semimodules and Schreier Internal Categories In The Category of Monoids. Georgian Math. J. 5(6), 575-581 (1998).
  • [16] Porter, T.: Crossed Modules in Cat and a Brown-Spencer Theorem for 2-Categories. Cah. Topol. Géom. Différ. Catég. XXVI-4 (1985).
  • [17] ¸Sahan, T., Mohammed, J.J.: Categories internal to crossed modules Sakarya University Journal of Science. 23 (4), 519-531, (2019).
  • [18] Temel, S., ¸Sahan, T. and Mucuk, O.: Crossed modules, double group-groupoids and crossed squares. Preprint arxiv:1802.03978v2 (2018).
  • [19] Temel, S.: Topological Crossed Semimodules and Schreier Internal Categories in the Category of Topological Monoids. Gazi University Journal of Science. 29 (4), 915-921 (2016).
  • [20] Temel, S.: Crossed semimodules of categories and Schreier 2-categories. Tbilisi Math. J. 11 (2), 47-57 (2018).
  • [21] Temel, S.: Normality and quotient in crossed modules over groupoids and 2-groupoids. Korean J. Math. 27 (1), 151-163 (2018).
  • [22] Whitehead, J.H.C.: Combinatorial homotopy II. Bull. Amer. Math. Soc. 55, 453-496 (1949).
  • [23] Whitehead, J.H.C.: Note on a previous paper entitled "On adding relations to homotopy group". Ann. Math. 47,806-810 (1946).

Internal Categories in Crossed Semimodules and Schreier Internal Categories

Year 2020, , 86 - 95, 15.10.2020
https://doi.org/10.36753/mathenot.691956

Abstract

In this paper, we characterize internal categories in the category of crossed semimodules and the category of Schreier internal categories within monoids. Then we prove a natural equivalence between their categories. This allows us to produce various examples of double categories.                                                                                                                                                                                                                                                                                                          .

References

  • [1] Baez, J.C., Baratin, A., Freidel, L. and Wise, D.K.: Infinite-Dimensional Representations of 2-Groups. Mem. Am. Math. Soc. 219, (1032) (2012).
  • [2] Baez, J.C., Lauda, A.D.: Higher Dimensional Algebra V: 2-Groups. Theory Appl. Categ. 12, 423–491 (2004).
  • [3] Brown, R.: Topology and Groupoids. BookSurge LLC, North Carolina (2006).
  • [4] Brown, R, Spencer, C.B.: Double groupoids and crossed modules. Cahiers de Topologie et Géométrie Différentielle Catégoriques 17 (4), 343-362 (1976).
  • [5] Brown, R., Spencer, C.B.: G-groupoids, crossed modules and the fundamental groupoid of a topological group. Mathematical Sciences and Applications E-Notes. Indagat. Math. 79 (4), 296-302 (1976).
  • [6] Brown, R., Higgins, P. J. and Sivera, R.: Nonabelian Algebraic Topology: Filtered spaces, crossed complexes, cubical homotopy groupoids. European Mathematical Society Tracts in Mathematics 15 (2011).
  • [7] Brown, R., Mucuk, O.: Covering groups of non-connected topological groups revisited. Math. Proc. Camb. Phil. Soc. 115, 97–110 (1994).
  • [8] Ehresmann, C.: Catégories doubles et catégories structurées. C. R. Acad. Sci. Paris 256, 1198-1201 (1963).
  • [9] Ehresmann, C.: Catégories structurées. Ann. Sci. Ec. Norm. Super. 80, 349-425 (1963b).
  • [10] Huebschmann, J.: Crossed n-fold extensions of groups and cohomology. Comment. Math. Helvetici. 55: 302-314 (1980).
  • [11] Kerler, T. and Lyubashenko, V.V.: Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners. Springer-Verlag. Berlin, Heidelberg, (2001).
  • [12] Loday, J.-L.: Cohomologie et groupes de Steinberg relatifs. J. Algebra. 54 178-202 (1978).
  • [13] Maclane, S.: Categories for the Working Mathematician, Graduate Text in Mathematics. 5, Springer-Verlag. New York (1971).
  • [14] Mucuk, O., Demir S.: Normality and quotient in crossed modules over groupoids and double groupoids. Turk J Math, 42, 2336 – 2347 (2018).
  • [15] Patchkoria, A.: Crossed Semimodules and Schreier Internal Categories In The Category of Monoids. Georgian Math. J. 5(6), 575-581 (1998).
  • [16] Porter, T.: Crossed Modules in Cat and a Brown-Spencer Theorem for 2-Categories. Cah. Topol. Géom. Différ. Catég. XXVI-4 (1985).
  • [17] ¸Sahan, T., Mohammed, J.J.: Categories internal to crossed modules Sakarya University Journal of Science. 23 (4), 519-531, (2019).
  • [18] Temel, S., ¸Sahan, T. and Mucuk, O.: Crossed modules, double group-groupoids and crossed squares. Preprint arxiv:1802.03978v2 (2018).
  • [19] Temel, S.: Topological Crossed Semimodules and Schreier Internal Categories in the Category of Topological Monoids. Gazi University Journal of Science. 29 (4), 915-921 (2016).
  • [20] Temel, S.: Crossed semimodules of categories and Schreier 2-categories. Tbilisi Math. J. 11 (2), 47-57 (2018).
  • [21] Temel, S.: Normality and quotient in crossed modules over groupoids and 2-groupoids. Korean J. Math. 27 (1), 151-163 (2018).
  • [22] Whitehead, J.H.C.: Combinatorial homotopy II. Bull. Amer. Math. Soc. 55, 453-496 (1949).
  • [23] Whitehead, J.H.C.: Note on a previous paper entitled "On adding relations to homotopy group". Ann. Math. 47,806-810 (1946).
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Sedat Temel 0000-0001-6553-8758

Publication Date October 15, 2020
Submission Date February 21, 2020
Acceptance Date April 17, 2020
Published in Issue Year 2020

Cite

APA Temel, S. (2020). Internal Categories in Crossed Semimodules and Schreier Internal Categories. Mathematical Sciences and Applications E-Notes, 8(2), 86-95. https://doi.org/10.36753/mathenot.691956
AMA Temel S. Internal Categories in Crossed Semimodules and Schreier Internal Categories. Math. Sci. Appl. E-Notes. October 2020;8(2):86-95. doi:10.36753/mathenot.691956
Chicago Temel, Sedat. “Internal Categories in Crossed Semimodules and Schreier Internal Categories”. Mathematical Sciences and Applications E-Notes 8, no. 2 (October 2020): 86-95. https://doi.org/10.36753/mathenot.691956.
EndNote Temel S (October 1, 2020) Internal Categories in Crossed Semimodules and Schreier Internal Categories. Mathematical Sciences and Applications E-Notes 8 2 86–95.
IEEE S. Temel, “Internal Categories in Crossed Semimodules and Schreier Internal Categories”, Math. Sci. Appl. E-Notes, vol. 8, no. 2, pp. 86–95, 2020, doi: 10.36753/mathenot.691956.
ISNAD Temel, Sedat. “Internal Categories in Crossed Semimodules and Schreier Internal Categories”. Mathematical Sciences and Applications E-Notes 8/2 (October 2020), 86-95. https://doi.org/10.36753/mathenot.691956.
JAMA Temel S. Internal Categories in Crossed Semimodules and Schreier Internal Categories. Math. Sci. Appl. E-Notes. 2020;8:86–95.
MLA Temel, Sedat. “Internal Categories in Crossed Semimodules and Schreier Internal Categories”. Mathematical Sciences and Applications E-Notes, vol. 8, no. 2, 2020, pp. 86-95, doi:10.36753/mathenot.691956.
Vancouver Temel S. Internal Categories in Crossed Semimodules and Schreier Internal Categories. Math. Sci. Appl. E-Notes. 2020;8(2):86-95.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.