Research Article
BibTex RIS Cite
Year 2023, , 178 - 191, 25.10.2023
https://doi.org/10.36753/mathenot.948462

Abstract

References

  • [1] Somsuwan, J., Nakprasit, K. M.: Some bounds for the polar derivative of a polynomial. International Journal of Mathematics and Mathematical Sciences. 2018, 5034607 (2018).
  • [2] Chanam, B., Dewan, K. K.: Inequalities for a polynomial and its derivatives. Journal of Interdisciplinary Mathematics. 11(4), 469-478 (2008).
  • [3] Bernstein, S.: Lecons sur les propriétés extrémales et la meilleure approximation desfonctions analytiques d’une variable réelle. Gauthier Villars. Paris (1926).
  • [4] Lax, P. D.: Proof of a conjecture of P. Erdös on the derivative of a polynomial. Bull. Amer. Math. Soc. 50, 509-513 (1944).
  • [5] Turán, P.: Über die Ableitung von Polynomen. Compositio Mathematica. 7, 89-95 (1939).
  • [6] Malik, M. A.: On the derivative of a polynomial. Journal of the London Mathematical Society. 2(1), 57-60 (1969).
  • [7] Aziz, A., Zargar, B. A.: Inequalities for a polynomial and its derivative. Mathematical Inequalities and Applications. 1(4), 543-550 (1998).
  • [8] Aziz, A., Rather, N. A.: A refinement of a theorem of Paul Turán concerning polynomials. Mathematical Inequalities and Applications. 1(2), 231-238 (1998).
  • [9] Dewan, K. K., Upadhye, C. M.: Inequalities for the polar derivative of a polynomial. Journal of Inequalities in Pure and Applied Mathematics. 9(4), 1-9 (2008).
  • [10] Gardner, R. B., Govil, N. K., Musukala, S. R.: Rate of growth of polynomials not vanishing inside a circle. Journal of Inequalities in Pure and Applied Mathematics. 6(2), 1-9 (2005).
  • [11] Pólya, G., Szegö, G.: Aufgaben and Lehratze ous der Analysis I (Problems and Theorems in Analysis I). Springer-Verlag. Berlin (1925).
  • [12] Chanam, B., Dewan, K. K.: Inequalities for a polynomial and its derivatives. J. Math. Anal. Appl. 336, 171-179 (2007).
  • [13] Qazi, M. A.: On the maximum modulus of polynomials. Proc. Amer. Math. Soc. 115, 337-343 (1992).

Generalized Turan-type Inequalities for Polar Derivative of a Polynomial

Year 2023, , 178 - 191, 25.10.2023
https://doi.org/10.36753/mathenot.948462

Abstract

Let $P(z)=a_0+\sum\limits_{\nu=\mu}^na_{\nu}z^{\nu}$, $1\leq\mu\leq n$, be a polynomial of degree $n$ having all its zeros in $|z|\leq k$, $k\geq 1$. We obtain an improvement and a generalization of an inequality in polar derivative proved by Somsuwan and Nakprasit [1]. Further, we also extend a result proved by Chanam and Dewan [2] to its polar version. Besides, our results are also found to generalize and improve some known inequalities.

References

  • [1] Somsuwan, J., Nakprasit, K. M.: Some bounds for the polar derivative of a polynomial. International Journal of Mathematics and Mathematical Sciences. 2018, 5034607 (2018).
  • [2] Chanam, B., Dewan, K. K.: Inequalities for a polynomial and its derivatives. Journal of Interdisciplinary Mathematics. 11(4), 469-478 (2008).
  • [3] Bernstein, S.: Lecons sur les propriétés extrémales et la meilleure approximation desfonctions analytiques d’une variable réelle. Gauthier Villars. Paris (1926).
  • [4] Lax, P. D.: Proof of a conjecture of P. Erdös on the derivative of a polynomial. Bull. Amer. Math. Soc. 50, 509-513 (1944).
  • [5] Turán, P.: Über die Ableitung von Polynomen. Compositio Mathematica. 7, 89-95 (1939).
  • [6] Malik, M. A.: On the derivative of a polynomial. Journal of the London Mathematical Society. 2(1), 57-60 (1969).
  • [7] Aziz, A., Zargar, B. A.: Inequalities for a polynomial and its derivative. Mathematical Inequalities and Applications. 1(4), 543-550 (1998).
  • [8] Aziz, A., Rather, N. A.: A refinement of a theorem of Paul Turán concerning polynomials. Mathematical Inequalities and Applications. 1(2), 231-238 (1998).
  • [9] Dewan, K. K., Upadhye, C. M.: Inequalities for the polar derivative of a polynomial. Journal of Inequalities in Pure and Applied Mathematics. 9(4), 1-9 (2008).
  • [10] Gardner, R. B., Govil, N. K., Musukala, S. R.: Rate of growth of polynomials not vanishing inside a circle. Journal of Inequalities in Pure and Applied Mathematics. 6(2), 1-9 (2005).
  • [11] Pólya, G., Szegö, G.: Aufgaben and Lehratze ous der Analysis I (Problems and Theorems in Analysis I). Springer-Verlag. Berlin (1925).
  • [12] Chanam, B., Dewan, K. K.: Inequalities for a polynomial and its derivatives. J. Math. Anal. Appl. 336, 171-179 (2007).
  • [13] Qazi, M. A.: On the maximum modulus of polynomials. Proc. Amer. Math. Soc. 115, 337-343 (1992).
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Kshetrimayum Krishnadas 0000-0001-5091-2874

Thangjam Singh This is me 0000-0002-9061-2400

Barchand Chanam This is me 0000-0001-6397-9066

Early Pub Date August 8, 2023
Publication Date October 25, 2023
Submission Date June 8, 2021
Acceptance Date April 11, 2022
Published in Issue Year 2023

Cite

APA Krishnadas, K., Singh, T., & Chanam, B. (2023). Generalized Turan-type Inequalities for Polar Derivative of a Polynomial. Mathematical Sciences and Applications E-Notes, 11(4), 178-191. https://doi.org/10.36753/mathenot.948462
AMA Krishnadas K, Singh T, Chanam B. Generalized Turan-type Inequalities for Polar Derivative of a Polynomial. Math. Sci. Appl. E-Notes. October 2023;11(4):178-191. doi:10.36753/mathenot.948462
Chicago Krishnadas, Kshetrimayum, Thangjam Singh, and Barchand Chanam. “Generalized Turan-Type Inequalities for Polar Derivative of a Polynomial”. Mathematical Sciences and Applications E-Notes 11, no. 4 (October 2023): 178-91. https://doi.org/10.36753/mathenot.948462.
EndNote Krishnadas K, Singh T, Chanam B (October 1, 2023) Generalized Turan-type Inequalities for Polar Derivative of a Polynomial. Mathematical Sciences and Applications E-Notes 11 4 178–191.
IEEE K. Krishnadas, T. Singh, and B. Chanam, “Generalized Turan-type Inequalities for Polar Derivative of a Polynomial”, Math. Sci. Appl. E-Notes, vol. 11, no. 4, pp. 178–191, 2023, doi: 10.36753/mathenot.948462.
ISNAD Krishnadas, Kshetrimayum et al. “Generalized Turan-Type Inequalities for Polar Derivative of a Polynomial”. Mathematical Sciences and Applications E-Notes 11/4 (October 2023), 178-191. https://doi.org/10.36753/mathenot.948462.
JAMA Krishnadas K, Singh T, Chanam B. Generalized Turan-type Inequalities for Polar Derivative of a Polynomial. Math. Sci. Appl. E-Notes. 2023;11:178–191.
MLA Krishnadas, Kshetrimayum et al. “Generalized Turan-Type Inequalities for Polar Derivative of a Polynomial”. Mathematical Sciences and Applications E-Notes, vol. 11, no. 4, 2023, pp. 178-91, doi:10.36753/mathenot.948462.
Vancouver Krishnadas K, Singh T, Chanam B. Generalized Turan-type Inequalities for Polar Derivative of a Polynomial. Math. Sci. Appl. E-Notes. 2023;11(4):178-91.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.