BibTex RIS Cite

BIFURCATION OF NONTRIVIAL PERIODIC SOLUTIONS FOR PULSED CHEMOTHERAPY MODEL

Year 2014, Volume: 2 Issue: 2, 22 - 44, 01.12.2014

Abstract

A pulsed chemotherapeutic treatment model is investigated in thiswork. We prove the existence of nontrivial periodic solutions by the mean ofLyapunov-Schmidt bifurcation method of a cancer model. The results obtainedare applied to the model with competition between normal, sensitive tumor andresistant tumor cells. The existence of bifurcated nontrivial periodic solutionsare discussed with respect to the competition parameter values

References

  • S. N. Chow and J. Hale, Bifurcation theory, Springer Verlag, 1984.
  • G. Iooss, Bifurcation of maps and applications, Study of mathematics, North Holland, 1979. [3] A. Lakmeche and O. Arino, Nonlinear mathematical model of pulsed-therapy of heterogeneous tumors, Nonlinear Anal. Real World Appl., 2, (2001), 455-465.

Year 2014, Volume: 2 Issue: 2, 22 - 44, 01.12.2014

Abstract

References

  • S. N. Chow and J. Hale, Bifurcation theory, Springer Verlag, 1984.
  • G. Iooss, Bifurcation of maps and applications, Study of mathematics, North Holland, 1979. [3] A. Lakmeche and O. Arino, Nonlinear mathematical model of pulsed-therapy of heterogeneous tumors, Nonlinear Anal. Real World Appl., 2, (2001), 455-465.
There are 2 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

AMEL Boudermıne This is me

MOHAMEDHELAL This is me

ABDELKADERLAKMECHE This is me

Publication Date December 1, 2014
Submission Date March 9, 2015
Published in Issue Year 2014 Volume: 2 Issue: 2

INDEXING & ABSTRACTING & ARCHIVING

34771           




20477   The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.