BibTex RIS Cite

THE PRODUCT OF SHAPE FIBRATIONS

Year 2013, Volume: 1 Issue: 2, 103 - 111, 01.12.2013

Abstract

The following fact is shown: Let p : E → B, p : E→ B bemaps of compact Hausdorff spaces. Then p × p : E × E → B × B is a shapefibration if and only if p and p are shape fibrations.Also the following fact onresolutions is shown:Let q = (qλ) : E → E = (Eλ, qλλ, Λ) and r = (rµ) : B → B = (Bµ, rµµ, M )are morphisms of pro-Cpt such that E and B are compact AN R-systems.Then q × r = (qλ× rµ) : E × B → E × B = (Eλ× Bµ, qλλ× rµµ, Λ × M )is a resolution of E × B if and only if q and r are resolutions of E and B,respectively. (Theorem 1)

References

  • Haxhibeqiri,Q., Shape fibrations for topological spaces, Glas. Mat. 17 (37) (1982), pp. 381- 401. [2] Haxhibeqiri,Q., The exact sequence of a shape fibration, Glas. Mat. 18 (38) (1983), pp. 157 - 177.
  • Haxhibeqiri,Q., Shape fibrations for compact Hausdorff spaces, Publications de l’Inst. de Mat´em. 31(45) (1982), pp.33-49.
  • Haxhibeqiri,Q., On the surjectivity of shape fibration, Matem. Vesnik, 37 (1985),pp.379- 384. [5] Mardeˇsi´c, S., Approximate polyhedra, resolutions of maps and shape fibrations, Fund. Math. 114 (1981), pp. 53-78.
  • Mardeˇsi´c, S., On resolutions for pairs of spaces, Tsukuba J. Math. Vol. 8, No. 1(1984), pp.81- 93. [7] Mardeˇsi´c, S., The foundations of shape theory, Lecture Notes, Univ. of Kentucky, 1978.
  • Mardeˇsi´c, S. and Rushing, T,. Shape fibrations I, Gen.Top. and Appl. 9(1978), pp. 193 - 215. [9] Mardeˇsi´c, S. and Rushing, T,. Shape fibrations II, Gen.Top. and Appl. 9(1979), pp. 283 -298. [10] Mardeˇsi´c, S. and Segal, J., Shape theory, North-Holland Pub.Comp., Amsterdam, 1982.
  • Mardeˇsi´c, S. and Watanabe, T., Approximate resolutions of spaces and mappings, Glas.Mat. 24 (44)(1989), 587 - 637.
  • Lisica, Ju. and Mardeˇsi´c, S., Coherent prohomotopy and strong shape theory, Glas. Mat. 19 (39) (1984), pp. 335 - 399.
  • Spanier, E., Algebraic Topology, McGraw-Hill book Comp., New-York, 1966.
  • Watanabe, T., Approximative shape theory, Mimeographed Notes,Univ. of Yamaguchi, 1982. [15] Watanabe, T., Approximative shape theory I, Tsukuba J. Math. Vol.11, No. 1 (1987), pp.17- 59. Prishtin¨e-KOSOV/”E
  • E-mail address: qamil.haxhibeqiri@uni-pr.edu
Year 2013, Volume: 1 Issue: 2, 103 - 111, 01.12.2013

Abstract

References

  • Haxhibeqiri,Q., Shape fibrations for topological spaces, Glas. Mat. 17 (37) (1982), pp. 381- 401. [2] Haxhibeqiri,Q., The exact sequence of a shape fibration, Glas. Mat. 18 (38) (1983), pp. 157 - 177.
  • Haxhibeqiri,Q., Shape fibrations for compact Hausdorff spaces, Publications de l’Inst. de Mat´em. 31(45) (1982), pp.33-49.
  • Haxhibeqiri,Q., On the surjectivity of shape fibration, Matem. Vesnik, 37 (1985),pp.379- 384. [5] Mardeˇsi´c, S., Approximate polyhedra, resolutions of maps and shape fibrations, Fund. Math. 114 (1981), pp. 53-78.
  • Mardeˇsi´c, S., On resolutions for pairs of spaces, Tsukuba J. Math. Vol. 8, No. 1(1984), pp.81- 93. [7] Mardeˇsi´c, S., The foundations of shape theory, Lecture Notes, Univ. of Kentucky, 1978.
  • Mardeˇsi´c, S. and Rushing, T,. Shape fibrations I, Gen.Top. and Appl. 9(1978), pp. 193 - 215. [9] Mardeˇsi´c, S. and Rushing, T,. Shape fibrations II, Gen.Top. and Appl. 9(1979), pp. 283 -298. [10] Mardeˇsi´c, S. and Segal, J., Shape theory, North-Holland Pub.Comp., Amsterdam, 1982.
  • Mardeˇsi´c, S. and Watanabe, T., Approximate resolutions of spaces and mappings, Glas.Mat. 24 (44)(1989), 587 - 637.
  • Lisica, Ju. and Mardeˇsi´c, S., Coherent prohomotopy and strong shape theory, Glas. Mat. 19 (39) (1984), pp. 335 - 399.
  • Spanier, E., Algebraic Topology, McGraw-Hill book Comp., New-York, 1966.
  • Watanabe, T., Approximative shape theory, Mimeographed Notes,Univ. of Yamaguchi, 1982. [15] Watanabe, T., Approximative shape theory I, Tsukuba J. Math. Vol.11, No. 1 (1987), pp.17- 59. Prishtin¨e-KOSOV/”E
  • E-mail address: qamil.haxhibeqiri@uni-pr.edu
There are 10 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Qamil Haxhibeqiri Qamil Haxhıbeqırı This is me

Publication Date December 1, 2013
Submission Date March 9, 2015
Published in Issue Year 2013 Volume: 1 Issue: 2

Cite

APA Haxhıbeqırı, Q. H. Q. (2013). THE PRODUCT OF SHAPE FIBRATIONS. Mathematical Sciences and Applications E-Notes, 1(2), 103-111.
AMA Haxhıbeqırı QHQ. THE PRODUCT OF SHAPE FIBRATIONS. Math. Sci. Appl. E-Notes. December 2013;1(2):103-111.
Chicago Haxhıbeqırı, Qamil Haxhibeqiri Qamil. “THE PRODUCT OF SHAPE FIBRATIONS”. Mathematical Sciences and Applications E-Notes 1, no. 2 (December 2013): 103-11.
EndNote Haxhıbeqırı QHQ (December 1, 2013) THE PRODUCT OF SHAPE FIBRATIONS. Mathematical Sciences and Applications E-Notes 1 2 103–111.
IEEE Q. H. Q. Haxhıbeqırı, “THE PRODUCT OF SHAPE FIBRATIONS”, Math. Sci. Appl. E-Notes, vol. 1, no. 2, pp. 103–111, 2013.
ISNAD Haxhıbeqırı, Qamil Haxhibeqiri Qamil. “THE PRODUCT OF SHAPE FIBRATIONS”. Mathematical Sciences and Applications E-Notes 1/2 (December 2013), 103-111.
JAMA Haxhıbeqırı QHQ. THE PRODUCT OF SHAPE FIBRATIONS. Math. Sci. Appl. E-Notes. 2013;1:103–111.
MLA Haxhıbeqırı, Qamil Haxhibeqiri Qamil. “THE PRODUCT OF SHAPE FIBRATIONS”. Mathematical Sciences and Applications E-Notes, vol. 1, no. 2, 2013, pp. 103-11.
Vancouver Haxhıbeqırı QHQ. THE PRODUCT OF SHAPE FIBRATIONS. Math. Sci. Appl. E-Notes. 2013;1(2):103-11.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.