BibTex RIS Cite

A CLASS OF ALMOST CONTACT METRIC MANIFOLDS AND DOUBLE-TWISTED PRODUCTS

Year 2013, Volume: 1 Issue: 1, 36 - 57, 01.06.2013

Abstract

We determine the Chinea-Gonzales class of almost contact metricmanifolds locally realized as double-twisted product manifolds I ×(λ1,λ2)F ,I being an open interval, F an almost Hermitian manifold and λ1, λ2smoothpositive functions. Several subclasses are studied. We also give an explicitexpression for the cosymplectic defect of any manifold in the considered classand derive several consequences in dimensions 2n + 1 ≥ 5. Explicit formulasfor two algebraic curvature tensor fields are obtained. In particular cases, thisallows to state interesting curvature relations

References

  • D.E. Blair, Riemannian Geometry of Conctact and Symplectic Manifolds, Progress in Math- ematics, 203, Birkh¨auser, Boston, 2002.
  • D.E. Blair, Curvature of contact metric manifolds, Progress in Mathematics, 234, Birkh¨auser, Boston, 2005, 1-13.
  • A. Bonome, L.M. Hervella, I. Rozas, On the classes of almost Hermitian structures on the tangent bundle of an almost contact metric manifold, Acta Math. Hungar. 56 (1990), 29-37. [4] D. Chinea, C. Gonzales, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. (4) 156 (1990), 15-36.
  • D. Chinea, J.C. Marrero Conformal changes of almost contact metric manifolds, Riv. Mat. Univ. Parma (5) 1 (1992), 19-31.
  • M. Falcitelli, A class of almost contact metric manifolds and twisted products, Balk. J. Geom. Appl. (1) 17 (2012), 17-29.
  • M. Falcitelli, A. Farinola, Curvature properties of almost Hermitian manifolds, Riv. Mat. Univ. Parma (5) 3 (1994), 301-320.
  • M. Falcitelli, A. Farinola, S. Salamon, Almost Hermitian Geometry, Differential Geom. Appl. 4 (1994), 259-282.
  • J.C. Gonz´ales-D´avila, F. Mart´ın Cabrera, Harmonic almost contact structures via the intrinsic torsion, Israel J. Math. 181 (2011), 145-187.
  • A. Gray, L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., (4) 123 (1980), 35-58.
  • R. Mocanu, M.I. Munteanu, Gray curvature identities for almost contact metric manifolds, J. Korean Math. Soc. 47 (2010), 505-521.
  • R. Ponge, H. Reckziegel, Twisted products in pseudo-Riemannian Geometry, Geometriae Dedicata, 48 (1993), 15-25.
  • F. Tricerri, L. Vanhecke, Curvature tensors in almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-397.
  • I. Vaisman, Conformal changes of almost contact metric structures, Lect. Notes in Math., 732, Springer-Verlag, Berlin, 1980, 435-443.
Year 2013, Volume: 1 Issue: 1, 36 - 57, 01.06.2013

Abstract

References

  • D.E. Blair, Riemannian Geometry of Conctact and Symplectic Manifolds, Progress in Math- ematics, 203, Birkh¨auser, Boston, 2002.
  • D.E. Blair, Curvature of contact metric manifolds, Progress in Mathematics, 234, Birkh¨auser, Boston, 2005, 1-13.
  • A. Bonome, L.M. Hervella, I. Rozas, On the classes of almost Hermitian structures on the tangent bundle of an almost contact metric manifold, Acta Math. Hungar. 56 (1990), 29-37. [4] D. Chinea, C. Gonzales, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. (4) 156 (1990), 15-36.
  • D. Chinea, J.C. Marrero Conformal changes of almost contact metric manifolds, Riv. Mat. Univ. Parma (5) 1 (1992), 19-31.
  • M. Falcitelli, A class of almost contact metric manifolds and twisted products, Balk. J. Geom. Appl. (1) 17 (2012), 17-29.
  • M. Falcitelli, A. Farinola, Curvature properties of almost Hermitian manifolds, Riv. Mat. Univ. Parma (5) 3 (1994), 301-320.
  • M. Falcitelli, A. Farinola, S. Salamon, Almost Hermitian Geometry, Differential Geom. Appl. 4 (1994), 259-282.
  • J.C. Gonz´ales-D´avila, F. Mart´ın Cabrera, Harmonic almost contact structures via the intrinsic torsion, Israel J. Math. 181 (2011), 145-187.
  • A. Gray, L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., (4) 123 (1980), 35-58.
  • R. Mocanu, M.I. Munteanu, Gray curvature identities for almost contact metric manifolds, J. Korean Math. Soc. 47 (2010), 505-521.
  • R. Ponge, H. Reckziegel, Twisted products in pseudo-Riemannian Geometry, Geometriae Dedicata, 48 (1993), 15-25.
  • F. Tricerri, L. Vanhecke, Curvature tensors in almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-397.
  • I. Vaisman, Conformal changes of almost contact metric structures, Lect. Notes in Math., 732, Springer-Verlag, Berlin, 1980, 435-443.
There are 13 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Maria Falcıtellı This is me

Publication Date June 1, 2013
Submission Date March 9, 2015
Published in Issue Year 2013 Volume: 1 Issue: 1

Cite

APA Falcıtellı, M. (2013). A CLASS OF ALMOST CONTACT METRIC MANIFOLDS AND DOUBLE-TWISTED PRODUCTS. Mathematical Sciences and Applications E-Notes, 1(1), 36-57.
AMA Falcıtellı M. A CLASS OF ALMOST CONTACT METRIC MANIFOLDS AND DOUBLE-TWISTED PRODUCTS. Math. Sci. Appl. E-Notes. June 2013;1(1):36-57.
Chicago Falcıtellı, Maria. “A CLASS OF ALMOST CONTACT METRIC MANIFOLDS AND DOUBLE-TWISTED PRODUCTS”. Mathematical Sciences and Applications E-Notes 1, no. 1 (June 2013): 36-57.
EndNote Falcıtellı M (June 1, 2013) A CLASS OF ALMOST CONTACT METRIC MANIFOLDS AND DOUBLE-TWISTED PRODUCTS. Mathematical Sciences and Applications E-Notes 1 1 36–57.
IEEE M. Falcıtellı, “A CLASS OF ALMOST CONTACT METRIC MANIFOLDS AND DOUBLE-TWISTED PRODUCTS”, Math. Sci. Appl. E-Notes, vol. 1, no. 1, pp. 36–57, 2013.
ISNAD Falcıtellı, Maria. “A CLASS OF ALMOST CONTACT METRIC MANIFOLDS AND DOUBLE-TWISTED PRODUCTS”. Mathematical Sciences and Applications E-Notes 1/1 (June 2013), 36-57.
JAMA Falcıtellı M. A CLASS OF ALMOST CONTACT METRIC MANIFOLDS AND DOUBLE-TWISTED PRODUCTS. Math. Sci. Appl. E-Notes. 2013;1:36–57.
MLA Falcıtellı, Maria. “A CLASS OF ALMOST CONTACT METRIC MANIFOLDS AND DOUBLE-TWISTED PRODUCTS”. Mathematical Sciences and Applications E-Notes, vol. 1, no. 1, 2013, pp. 36-57.
Vancouver Falcıtellı M. A CLASS OF ALMOST CONTACT METRIC MANIFOLDS AND DOUBLE-TWISTED PRODUCTS. Math. Sci. Appl. E-Notes. 2013;1(1):36-57.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.