BibTex RIS Cite

ANTI-INVARIANT RIEMANNIAN SUBMERSIONS FROM ALMOST PRODUCT RIEMANNIAN MANIFOLDS

Year 2013, Volume: 1 Issue: 1, 58 - 66, 01.06.2013

Abstract

In this paper, we introduce anti-invariant Riemannian submersions from almost product Riemannian manifolds onto Riemannian manifolds.We give an example, investigate the geometry of foliations which are arisenfrom the definition of a Riemannian submersion and check the harmonicity ofsuch submersions

References

  • Baird, P. and Wood, J.C., Harmonic morphisms between Riemannia manifolds. Oxford sci- ence publications, 2003.
  • Bourguignon, J.P., Lawson, H.B., A mathematician’s visit to Kaluza- Klein theory. Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1989), 143-163.
  • Bourguignon, J.P., Lawson, H.B., Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys. 79(1981), 189-230.
  • Eells, J., Sampson, J.H., Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86(1964), 109-160.
  • Falcitelli, M., Ianus, S. and Pastore, A.M., Riemannian submersions and related topics. World Scientific, 2004.
  • Gray, A., Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16(1967), 715-737.
  • G¨und¨uzalp, Y., Slant submersions from almost product Riemannian manifolds. Turkish Jour- nal of Mathematics accepted, doi: 10.3906/mat-1205-64.
  • Ianus, S., Mazzocco, R. and Vilcu, G. E, Riemannian submersions from quaternionic mani- folds. Acta Appl. Math. 104(2008), 83-89.
  • Ianus, S. and Visinescu, M., Kaluza-Klein theory with scalar fields and generalised Hopf manifolds. Classical Quantum Gravity 4(1987), 1317-1325.
  • Ianus, S. and Visinescu, M., Space-time compactification and Riemannian submersions. The mathematical heritage of C.F. Gauss, World Sci. Publ., River Edge, NJ, (1991),358-371.
  • Mustafa, M.T., Applications of harmonic morphisms to gravity. J. Math. phys. 41(2000), 6918-6929.
  • O’Neill, B., The fundamental equations of a submersion. Michigan Math. J. 13(1966), 459- 4
  • Park, K.S., H-slant submersions. Bull. Korean Math. Soc. 49(2012), 329-338.
  • S.ahin, B., Slant submersions from almost Hermitian manifolds. Bull. Math. Soc.Sci. Math. Roumanie Tome 54(102) (2011), 93-105.
  • S.ahin, B., Anti-invariant Riemannian submersions from almost Hermitian manifolds. Cent. Eur. J. Math. 8(3)(2010), 437-447.
  • Watson, B., Almost Hermitian submersions. J. Diff. Geom. 11(1976) 147-165.
  • Watson, B., G,G’-Riemannian submersions and nonlinear gauge field equations of general relativity. Global analysis on manifolds Teubner-Texte Math.,57,Teubner, Leipzig, (1983), 324-2
  • Yano, K. and Kon, M., Structures on manifolds. World Scientific. 1984.
  • Department of Mathematics, Dicle University, 21280, Diyarbakır-Turkey
  • E-mail address: ygunduzalp@dicle.edu.tr
Year 2013, Volume: 1 Issue: 1, 58 - 66, 01.06.2013

Abstract

References

  • Baird, P. and Wood, J.C., Harmonic morphisms between Riemannia manifolds. Oxford sci- ence publications, 2003.
  • Bourguignon, J.P., Lawson, H.B., A mathematician’s visit to Kaluza- Klein theory. Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1989), 143-163.
  • Bourguignon, J.P., Lawson, H.B., Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys. 79(1981), 189-230.
  • Eells, J., Sampson, J.H., Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86(1964), 109-160.
  • Falcitelli, M., Ianus, S. and Pastore, A.M., Riemannian submersions and related topics. World Scientific, 2004.
  • Gray, A., Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16(1967), 715-737.
  • G¨und¨uzalp, Y., Slant submersions from almost product Riemannian manifolds. Turkish Jour- nal of Mathematics accepted, doi: 10.3906/mat-1205-64.
  • Ianus, S., Mazzocco, R. and Vilcu, G. E, Riemannian submersions from quaternionic mani- folds. Acta Appl. Math. 104(2008), 83-89.
  • Ianus, S. and Visinescu, M., Kaluza-Klein theory with scalar fields and generalised Hopf manifolds. Classical Quantum Gravity 4(1987), 1317-1325.
  • Ianus, S. and Visinescu, M., Space-time compactification and Riemannian submersions. The mathematical heritage of C.F. Gauss, World Sci. Publ., River Edge, NJ, (1991),358-371.
  • Mustafa, M.T., Applications of harmonic morphisms to gravity. J. Math. phys. 41(2000), 6918-6929.
  • O’Neill, B., The fundamental equations of a submersion. Michigan Math. J. 13(1966), 459- 4
  • Park, K.S., H-slant submersions. Bull. Korean Math. Soc. 49(2012), 329-338.
  • S.ahin, B., Slant submersions from almost Hermitian manifolds. Bull. Math. Soc.Sci. Math. Roumanie Tome 54(102) (2011), 93-105.
  • S.ahin, B., Anti-invariant Riemannian submersions from almost Hermitian manifolds. Cent. Eur. J. Math. 8(3)(2010), 437-447.
  • Watson, B., Almost Hermitian submersions. J. Diff. Geom. 11(1976) 147-165.
  • Watson, B., G,G’-Riemannian submersions and nonlinear gauge field equations of general relativity. Global analysis on manifolds Teubner-Texte Math.,57,Teubner, Leipzig, (1983), 324-2
  • Yano, K. and Kon, M., Structures on manifolds. World Scientific. 1984.
  • Department of Mathematics, Dicle University, 21280, Diyarbakır-Turkey
  • E-mail address: ygunduzalp@dicle.edu.tr
There are 20 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Yilmaz Gunduzalp This is me

Publication Date June 1, 2013
Submission Date March 9, 2015
Published in Issue Year 2013 Volume: 1 Issue: 1

Cite

APA Gunduzalp, Y. (2013). ANTI-INVARIANT RIEMANNIAN SUBMERSIONS FROM ALMOST PRODUCT RIEMANNIAN MANIFOLDS. Mathematical Sciences and Applications E-Notes, 1(1), 58-66.
AMA Gunduzalp Y. ANTI-INVARIANT RIEMANNIAN SUBMERSIONS FROM ALMOST PRODUCT RIEMANNIAN MANIFOLDS. Math. Sci. Appl. E-Notes. June 2013;1(1):58-66.
Chicago Gunduzalp, Yilmaz. “ANTI-INVARIANT RIEMANNIAN SUBMERSIONS FROM ALMOST PRODUCT RIEMANNIAN MANIFOLDS”. Mathematical Sciences and Applications E-Notes 1, no. 1 (June 2013): 58-66.
EndNote Gunduzalp Y (June 1, 2013) ANTI-INVARIANT RIEMANNIAN SUBMERSIONS FROM ALMOST PRODUCT RIEMANNIAN MANIFOLDS. Mathematical Sciences and Applications E-Notes 1 1 58–66.
IEEE Y. Gunduzalp, “ANTI-INVARIANT RIEMANNIAN SUBMERSIONS FROM ALMOST PRODUCT RIEMANNIAN MANIFOLDS”, Math. Sci. Appl. E-Notes, vol. 1, no. 1, pp. 58–66, 2013.
ISNAD Gunduzalp, Yilmaz. “ANTI-INVARIANT RIEMANNIAN SUBMERSIONS FROM ALMOST PRODUCT RIEMANNIAN MANIFOLDS”. Mathematical Sciences and Applications E-Notes 1/1 (June 2013), 58-66.
JAMA Gunduzalp Y. ANTI-INVARIANT RIEMANNIAN SUBMERSIONS FROM ALMOST PRODUCT RIEMANNIAN MANIFOLDS. Math. Sci. Appl. E-Notes. 2013;1:58–66.
MLA Gunduzalp, Yilmaz. “ANTI-INVARIANT RIEMANNIAN SUBMERSIONS FROM ALMOST PRODUCT RIEMANNIAN MANIFOLDS”. Mathematical Sciences and Applications E-Notes, vol. 1, no. 1, 2013, pp. 58-66.
Vancouver Gunduzalp Y. ANTI-INVARIANT RIEMANNIAN SUBMERSIONS FROM ALMOST PRODUCT RIEMANNIAN MANIFOLDS. Math. Sci. Appl. E-Notes. 2013;1(1):58-66.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.