BibTex RIS Cite

A MACMILLIAMS TYPE IDENTITY FOR M-SPOTTY GENERALIZED LEE WEIGHT ENUMERATORS OVER ZQ

Year 2013, Volume: 1 Issue: 1, 111 - 116, 01.06.2013

Abstract

Burst errors are very common in practice. There have been manydesigns in order to control and correct such errors.Recently, a new classof byte error control codes called spotty byte error control codes has beenspecifically designed to fit the large capacity memory systems that use highdensity random access memory (RAM) chips with input/output data of 8, 16,and 32 bits. The MacWilliams identity describes how the weight enumeratorof a linear code and the weight enumerator of its dual code are related. Also,Lee metric which has attracted many researchers due to its applications. Inthis paper, we combine these two interesting topics and introduce the m-spottygeneralized Lee weights and the m-spotty generalized Lee weight enumeratorsof a code over Zqand prove a MacWilliams type identity. This generalizationincludes both the case of the identity given in the paper [I. Siap, MacWilliamsidentity for m-spotty Lee weight enumerators, Appl.Math.Lett.23 (1)(2010) 13-16] and the identity given in the paper [M. ¨Ozen, V. S¸iap, TheMacWilliams identity for m-spotty weight enumerators of linear codes overfinite fields, Comput. Math. Appl. 61 (4) (2011) 1000-1004] over Z2and Z3as special cases

References

  • Fujiwara, E., Code Design for Dependable Systems: Theory and Practical Applications. John Wiley and Sons, Inc., Hoboken, New Jersey, 2006.
  • Umanesan, G. and Fujiwara, E., A class of random multiple bits in a byte error correcting and single byte error detectingSt/bEC − SbEDcodes. IEEE Trans. Comput. 52 (2003), no.7, 835-847.
  • Kaneda, S., and Fujiwara, E., Single byte error correcting-double byte error detecting codes for memory systems. IEEE Trans. Comput. 31 (1982), no.7, 596-602.
  • Nakamura, K., A class of error-correcting codes for DPSK channels. In Proc. IEEE Conf. Commun. (1979) 45.4.1-45.4.5.
  • Roth, R., M, and Siegel, P., H., Lee metric BCH codes and their application to constrained and partial-response channels. IEEE Trans. Inform. Theory. IT-40 (1994), 1083-1096.
  • Orlitsky, A., Interactive communication of balanced distributions and of correlated files. SIAM J. Discrete Math. 6 (1993), 548-564.
  • Etzion, T., and Yaakobi, E., Error-Correction of Multidimensional Bursts. IEEE Trans. In- form. Theory. IT-55 (2009), 961-976.
  • Barg, A., and Mazumdar, A., Codes in permutations and error correction for rank modulation. arxiv.org/abs/0908.4094. (2009).
  • Suzuki, K., and Fujiwara, E., MacWilliams identity for m-spotty weight enumerator. IEICE Trans. Fundam. E93-A 2 (2010), 526-531.
  • Siap, I., MacWilliams identity for m-spotty Lee weight enumerator. Appl. Math. Lett. 23 (2010), no.1, 13-16.
  • ¨Ozen, M., and S¸iap, V., The MacWilliams identity for m-spotty weight enumerators of linear codes over finite fields. Comput. Math. Appl. 61 (2011), no. 4, 1000-1004.
  • Berkelamp, E., R., Algebraic Coding Theory. McGraw-Hill, New York, 1968.
  • Suzuki, K., Kashiyama, T., and Fujiwara, E., A general class m-spotty byte error control codes. IEICE Trans. Fundam. E90-A 7 (2007), 1418-1427.
  • MacWilliams, F., J., and Sloane, N., J., A., The Theory of Error Correcting Codes. North- Holland Pub. Co., 1977.
  • Department of Mathematical Engineering, Yildiz Technical University, Istanbul- TURKEY
Year 2013, Volume: 1 Issue: 1, 111 - 116, 01.06.2013

Abstract

References

  • Fujiwara, E., Code Design for Dependable Systems: Theory and Practical Applications. John Wiley and Sons, Inc., Hoboken, New Jersey, 2006.
  • Umanesan, G. and Fujiwara, E., A class of random multiple bits in a byte error correcting and single byte error detectingSt/bEC − SbEDcodes. IEEE Trans. Comput. 52 (2003), no.7, 835-847.
  • Kaneda, S., and Fujiwara, E., Single byte error correcting-double byte error detecting codes for memory systems. IEEE Trans. Comput. 31 (1982), no.7, 596-602.
  • Nakamura, K., A class of error-correcting codes for DPSK channels. In Proc. IEEE Conf. Commun. (1979) 45.4.1-45.4.5.
  • Roth, R., M, and Siegel, P., H., Lee metric BCH codes and their application to constrained and partial-response channels. IEEE Trans. Inform. Theory. IT-40 (1994), 1083-1096.
  • Orlitsky, A., Interactive communication of balanced distributions and of correlated files. SIAM J. Discrete Math. 6 (1993), 548-564.
  • Etzion, T., and Yaakobi, E., Error-Correction of Multidimensional Bursts. IEEE Trans. In- form. Theory. IT-55 (2009), 961-976.
  • Barg, A., and Mazumdar, A., Codes in permutations and error correction for rank modulation. arxiv.org/abs/0908.4094. (2009).
  • Suzuki, K., and Fujiwara, E., MacWilliams identity for m-spotty weight enumerator. IEICE Trans. Fundam. E93-A 2 (2010), 526-531.
  • Siap, I., MacWilliams identity for m-spotty Lee weight enumerator. Appl. Math. Lett. 23 (2010), no.1, 13-16.
  • ¨Ozen, M., and S¸iap, V., The MacWilliams identity for m-spotty weight enumerators of linear codes over finite fields. Comput. Math. Appl. 61 (2011), no. 4, 1000-1004.
  • Berkelamp, E., R., Algebraic Coding Theory. McGraw-Hill, New York, 1968.
  • Suzuki, K., Kashiyama, T., and Fujiwara, E., A general class m-spotty byte error control codes. IEICE Trans. Fundam. E90-A 7 (2007), 1418-1427.
  • MacWilliams, F., J., and Sloane, N., J., A., The Theory of Error Correcting Codes. North- Holland Pub. Co., 1977.
  • Department of Mathematical Engineering, Yildiz Technical University, Istanbul- TURKEY
There are 15 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Vedat Şiap This is me

Publication Date June 1, 2013
Submission Date March 9, 2015
Published in Issue Year 2013 Volume: 1 Issue: 1

Cite

APA Şiap, V. (2013). A MACMILLIAMS TYPE IDENTITY FOR M-SPOTTY GENERALIZED LEE WEIGHT ENUMERATORS OVER ZQ. Mathematical Sciences and Applications E-Notes, 1(1), 111-116.
AMA Şiap V. A MACMILLIAMS TYPE IDENTITY FOR M-SPOTTY GENERALIZED LEE WEIGHT ENUMERATORS OVER ZQ. Math. Sci. Appl. E-Notes. June 2013;1(1):111-116.
Chicago Şiap, Vedat. “A MACMILLIAMS TYPE IDENTITY FOR M-SPOTTY GENERALIZED LEE WEIGHT ENUMERATORS OVER ZQ”. Mathematical Sciences and Applications E-Notes 1, no. 1 (June 2013): 111-16.
EndNote Şiap V (June 1, 2013) A MACMILLIAMS TYPE IDENTITY FOR M-SPOTTY GENERALIZED LEE WEIGHT ENUMERATORS OVER ZQ. Mathematical Sciences and Applications E-Notes 1 1 111–116.
IEEE V. Şiap, “A MACMILLIAMS TYPE IDENTITY FOR M-SPOTTY GENERALIZED LEE WEIGHT ENUMERATORS OVER ZQ”, Math. Sci. Appl. E-Notes, vol. 1, no. 1, pp. 111–116, 2013.
ISNAD Şiap, Vedat. “A MACMILLIAMS TYPE IDENTITY FOR M-SPOTTY GENERALIZED LEE WEIGHT ENUMERATORS OVER ZQ”. Mathematical Sciences and Applications E-Notes 1/1 (June 2013), 111-116.
JAMA Şiap V. A MACMILLIAMS TYPE IDENTITY FOR M-SPOTTY GENERALIZED LEE WEIGHT ENUMERATORS OVER ZQ. Math. Sci. Appl. E-Notes. 2013;1:111–116.
MLA Şiap, Vedat. “A MACMILLIAMS TYPE IDENTITY FOR M-SPOTTY GENERALIZED LEE WEIGHT ENUMERATORS OVER ZQ”. Mathematical Sciences and Applications E-Notes, vol. 1, no. 1, 2013, pp. 111-6.
Vancouver Şiap V. A MACMILLIAMS TYPE IDENTITY FOR M-SPOTTY GENERALIZED LEE WEIGHT ENUMERATORS OVER ZQ. Math. Sci. Appl. E-Notes. 2013;1(1):111-6.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.