[1] Chan, H. H. and Cooper, S., Rational Analogues of Ramanujan’s series for 1/π, Math. Proc.
Camb. Phil. Soc. 153 (2012), no. 2, 361-383.
[2] Koshy, T., Fibonacci and Lucas numbers with applications. Pure and Applied Mathematics
Wiley-Interscience. New York, 2001.
[3] Falcon, S. and Plaza, A., On the Fibonacci k- numbers. Chaos Solitons Fractals 32 (2007),
no. 5, 1615-1624.
[4] Falcon, S. and Plaza, A., The k-Fibonacci sequence and the Pascal 2-triangle. Chaos Solitons
Fractals 33 (2007), no. 1, 38-49.
[5] Kalman, D. and Mena, R., The Fibonacci numbers-exposed. Math. Mag. 76 (2003), no. 3,
167-181.
[6] De Koninck, J. M. and Luca, F., Analytic Number Theory. Exploring the Anatomy of Integers.
Graduate Studies in Mathematics: 134. American Mathematical Society, Providence, RI, 2012.
[7] Hoggatt, V. E., Generalized Zeckendorf Theorem. Fibonacci Quart. 10 (1972), no. 1, 89-93.
Add To My Library
NEW PRESENTATIONS FOR REAL NUMBERS
Year 2015,
Volume: 3 Issue: 1, 13 - 17, 15.05.2015
[1] Chan, H. H. and Cooper, S., Rational Analogues of Ramanujan’s series for 1/π, Math. Proc.
Camb. Phil. Soc. 153 (2012), no. 2, 361-383.
[2] Koshy, T., Fibonacci and Lucas numbers with applications. Pure and Applied Mathematics
Wiley-Interscience. New York, 2001.
[3] Falcon, S. and Plaza, A., On the Fibonacci k- numbers. Chaos Solitons Fractals 32 (2007),
no. 5, 1615-1624.
[4] Falcon, S. and Plaza, A., The k-Fibonacci sequence and the Pascal 2-triangle. Chaos Solitons
Fractals 33 (2007), no. 1, 38-49.
[5] Kalman, D. and Mena, R., The Fibonacci numbers-exposed. Math. Mag. 76 (2003), no. 3,
167-181.
[6] De Koninck, J. M. and Luca, F., Analytic Number Theory. Exploring the Anatomy of Integers.
Graduate Studies in Mathematics: 134. American Mathematical Society, Providence, RI, 2012.
[7] Hoggatt, V. E., Generalized Zeckendorf Theorem. Fibonacci Quart. 10 (1972), no. 1, 89-93.
Yılmaz özgür, N., & Uçar, S. (2015). NEW PRESENTATIONS FOR REAL NUMBERS. Mathematical Sciences and Applications E-Notes, 3(1), 13-17. https://doi.org/10.36753/mathenot.421198
AMA
Yılmaz özgür N, Uçar S. NEW PRESENTATIONS FOR REAL NUMBERS. Math. Sci. Appl. E-Notes. May 2015;3(1):13-17. doi:10.36753/mathenot.421198
Chicago
Yılmaz özgür, Nihal, and Sümeyra Uçar. “NEW PRESENTATIONS FOR REAL NUMBERS”. Mathematical Sciences and Applications E-Notes 3, no. 1 (May 2015): 13-17. https://doi.org/10.36753/mathenot.421198.
EndNote
Yılmaz özgür N, Uçar S (May 1, 2015) NEW PRESENTATIONS FOR REAL NUMBERS. Mathematical Sciences and Applications E-Notes 3 1 13–17.
IEEE
N. Yılmaz özgür and S. Uçar, “NEW PRESENTATIONS FOR REAL NUMBERS”, Math. Sci. Appl. E-Notes, vol. 3, no. 1, pp. 13–17, 2015, doi: 10.36753/mathenot.421198.
ISNAD
Yılmaz özgür, Nihal - Uçar, Sümeyra. “NEW PRESENTATIONS FOR REAL NUMBERS”. Mathematical Sciences and Applications E-Notes 3/1 (May2015), 13-17. https://doi.org/10.36753/mathenot.421198.
JAMA
Yılmaz özgür N, Uçar S. NEW PRESENTATIONS FOR REAL NUMBERS. Math. Sci. Appl. E-Notes. 2015;3:13–17.
MLA
Yılmaz özgür, Nihal and Sümeyra Uçar. “NEW PRESENTATIONS FOR REAL NUMBERS”. Mathematical Sciences and Applications E-Notes, vol. 3, no. 1, 2015, pp. 13-17, doi:10.36753/mathenot.421198.
Vancouver
Yılmaz özgür N, Uçar S. NEW PRESENTATIONS FOR REAL NUMBERS. Math. Sci. Appl. E-Notes. 2015;3(1):13-7.