Research Article
BibTex RIS Cite
Year 2015, Volume: 3 Issue: 1, 86 - 93, 15.05.2015
https://doi.org/10.36753/mathenot.421222

Abstract

References

  • [1] Euler, L., De Curvis Triangularibus, Acta Acad. Petropol., 3-30, 1778 (1780).
  • [2] Barbier, E., Note Sur le Probleme de I’aiguille et le jeu du Joint Couvert, Journal de Math´ematiques Pures et Appliqu´ees, 2 (1860), no. 5, 273-286.
  • [3] Fujiwara, M., On space Curves of Constant Breadth, Tohoku Mathematical Journal, 5 (1914), 180-184.
  • [4] Blaschke, W., Leibziger Berichte, 67 (1917), 290.
  • [5] Ball, N.H., On Ovals, American Mathematical Monthly, 37 (1930), no. 7, 348-353.
  • [6] Mellish, A.P., Notes on Differential Geometry, Annals of Mathematics, 32 (1931), no. 1, 181-190.
  • [7] Hammer, P.C., Constant Breadth Curves in the Plane, Procedings of the American Mathematical Society, 6 (1955), no. 2, 333-334.
  • [8] Smakal, S., Curves of Constant Breadth, Czechoslovak Mathematical Journal, 23 (1973), no. 1, 86-94.
  • [9] Köse, O., Düzlemde Ovaller ve Sabit Genişlikli Eğrilerin Bazı Özellikleri, Doğa Bilim Dergisi, Seri B, 8 (1984), no. 2, 119-126.
  • [10] Köse, O., On Space Curves of Constant Breadth, ¨ Do˘ga Tr. J. Math, 10 (1986), no. 1, 11-14. [11] Ma˘gden, A., and Köse, O., On the Curves of Constant Breadth in ¨ E4 Space, Tr. J. of Mathematics, 21 (1997), 277-284.
  • [12] Akdoğan, Z., and Mağden, A., Some Characterization of Curves of Constant Breadth in En Space, Turk J Math, 25 (2001), 433-444.
  • [13] Reuleaux, F., The Kinematics of Machinery, Translated by A. B. W. Kennedy, Dover Pub. New York, 1963.
  • [14] Sezer, M., Differential Equations Characterizing Space Curves of Constant Breadth and a Criterion for These Curves, Turkish J. of Math, 13 (1989), no. 2, 70-78.
  • [15] Onder, M., Kocayi˘git, H. and Candan, E., Differential Equations Characterizing Timelike ¨ and Spacelike Curves of Constant Breadth in Minkowski 3-Space E31, J. Korean Math. Soc. 48 (2011), no. 4, 849-866.
  • [16] Kocayiğit, H. and Önder, M., Space Curves of Constant Breadth in Minkowski 3-Space, ¨ Annali di Matematica, 192 (2013), no. 5, 805-814.
  • [17] O’Neill, B., Semi Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
  • [18] Hanson, A.J. and Ma, H., Parallel Transport Approach to Curve Framing, Indiana University, Technical Report TR425, January 11, 1995.
  • [19] Bishop, R.L., There is More Than One Way to Frame a Curve, American Mathematical Monthly, 82 (1975), no. 3, 246-251.
  • [20] Hanson, A.J., and Ma, H., Quaternion Frame Approach to Streamline Visualization, IEEE Transactions on Visulation and Computer Graphics, 1 (1995), no.2, 164-174.
  • [21] B. Bükçü and M.K. Karacan, Bishop frame of the spacelike curve with a spacelike principal normal in Minkowski 3-space, Commun. Fac. Sci. Univ. Ank. Series A1, 57 (2008), no. 1, 13-22.
  • [22] B. Bükçü and M.K. Karacan, Bishop frame of the spacelike curve with a spacelike binormal in Minkowski 3-space, Selçuk J. Appl. Math, 11 (2010), no. 1, 15-25.
  • [23] Bükçü, B. and Karacan, M.K., The Slant Helices according to Bishop Frame of the Spacelike Curve in Lorentzian Space, Journal of Interdisciplinary Mathematics, 12 (2009), no. 5, 691- 700.

SPACELIKE CURVES OF CONSTANT BREADTH ACCORDING TO BISHOP FRAME IN MINKOWSKI 3-SPACE

Year 2015, Volume: 3 Issue: 1, 86 - 93, 15.05.2015
https://doi.org/10.36753/mathenot.421222

Abstract


References

  • [1] Euler, L., De Curvis Triangularibus, Acta Acad. Petropol., 3-30, 1778 (1780).
  • [2] Barbier, E., Note Sur le Probleme de I’aiguille et le jeu du Joint Couvert, Journal de Math´ematiques Pures et Appliqu´ees, 2 (1860), no. 5, 273-286.
  • [3] Fujiwara, M., On space Curves of Constant Breadth, Tohoku Mathematical Journal, 5 (1914), 180-184.
  • [4] Blaschke, W., Leibziger Berichte, 67 (1917), 290.
  • [5] Ball, N.H., On Ovals, American Mathematical Monthly, 37 (1930), no. 7, 348-353.
  • [6] Mellish, A.P., Notes on Differential Geometry, Annals of Mathematics, 32 (1931), no. 1, 181-190.
  • [7] Hammer, P.C., Constant Breadth Curves in the Plane, Procedings of the American Mathematical Society, 6 (1955), no. 2, 333-334.
  • [8] Smakal, S., Curves of Constant Breadth, Czechoslovak Mathematical Journal, 23 (1973), no. 1, 86-94.
  • [9] Köse, O., Düzlemde Ovaller ve Sabit Genişlikli Eğrilerin Bazı Özellikleri, Doğa Bilim Dergisi, Seri B, 8 (1984), no. 2, 119-126.
  • [10] Köse, O., On Space Curves of Constant Breadth, ¨ Do˘ga Tr. J. Math, 10 (1986), no. 1, 11-14. [11] Ma˘gden, A., and Köse, O., On the Curves of Constant Breadth in ¨ E4 Space, Tr. J. of Mathematics, 21 (1997), 277-284.
  • [12] Akdoğan, Z., and Mağden, A., Some Characterization of Curves of Constant Breadth in En Space, Turk J Math, 25 (2001), 433-444.
  • [13] Reuleaux, F., The Kinematics of Machinery, Translated by A. B. W. Kennedy, Dover Pub. New York, 1963.
  • [14] Sezer, M., Differential Equations Characterizing Space Curves of Constant Breadth and a Criterion for These Curves, Turkish J. of Math, 13 (1989), no. 2, 70-78.
  • [15] Onder, M., Kocayi˘git, H. and Candan, E., Differential Equations Characterizing Timelike ¨ and Spacelike Curves of Constant Breadth in Minkowski 3-Space E31, J. Korean Math. Soc. 48 (2011), no. 4, 849-866.
  • [16] Kocayiğit, H. and Önder, M., Space Curves of Constant Breadth in Minkowski 3-Space, ¨ Annali di Matematica, 192 (2013), no. 5, 805-814.
  • [17] O’Neill, B., Semi Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
  • [18] Hanson, A.J. and Ma, H., Parallel Transport Approach to Curve Framing, Indiana University, Technical Report TR425, January 11, 1995.
  • [19] Bishop, R.L., There is More Than One Way to Frame a Curve, American Mathematical Monthly, 82 (1975), no. 3, 246-251.
  • [20] Hanson, A.J., and Ma, H., Quaternion Frame Approach to Streamline Visualization, IEEE Transactions on Visulation and Computer Graphics, 1 (1995), no.2, 164-174.
  • [21] B. Bükçü and M.K. Karacan, Bishop frame of the spacelike curve with a spacelike principal normal in Minkowski 3-space, Commun. Fac. Sci. Univ. Ank. Series A1, 57 (2008), no. 1, 13-22.
  • [22] B. Bükçü and M.K. Karacan, Bishop frame of the spacelike curve with a spacelike binormal in Minkowski 3-space, Selçuk J. Appl. Math, 11 (2010), no. 1, 15-25.
  • [23] Bükçü, B. and Karacan, M.K., The Slant Helices according to Bishop Frame of the Spacelike Curve in Lorentzian Space, Journal of Interdisciplinary Mathematics, 12 (2009), no. 5, 691- 700.
There are 22 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Hüseyin Kocayiğit

Muhammed Çetin

Publication Date May 15, 2015
Submission Date May 12, 2014
Published in Issue Year 2015 Volume: 3 Issue: 1

Cite

APA Kocayiğit, H., & Çetin, M. (2015). SPACELIKE CURVES OF CONSTANT BREADTH ACCORDING TO BISHOP FRAME IN MINKOWSKI 3-SPACE. Mathematical Sciences and Applications E-Notes, 3(1), 86-93. https://doi.org/10.36753/mathenot.421222
AMA Kocayiğit H, Çetin M. SPACELIKE CURVES OF CONSTANT BREADTH ACCORDING TO BISHOP FRAME IN MINKOWSKI 3-SPACE. Math. Sci. Appl. E-Notes. May 2015;3(1):86-93. doi:10.36753/mathenot.421222
Chicago Kocayiğit, Hüseyin, and Muhammed Çetin. “SPACELIKE CURVES OF CONSTANT BREADTH ACCORDING TO BISHOP FRAME IN MINKOWSKI 3-SPACE”. Mathematical Sciences and Applications E-Notes 3, no. 1 (May 2015): 86-93. https://doi.org/10.36753/mathenot.421222.
EndNote Kocayiğit H, Çetin M (May 1, 2015) SPACELIKE CURVES OF CONSTANT BREADTH ACCORDING TO BISHOP FRAME IN MINKOWSKI 3-SPACE. Mathematical Sciences and Applications E-Notes 3 1 86–93.
IEEE H. Kocayiğit and M. Çetin, “SPACELIKE CURVES OF CONSTANT BREADTH ACCORDING TO BISHOP FRAME IN MINKOWSKI 3-SPACE”, Math. Sci. Appl. E-Notes, vol. 3, no. 1, pp. 86–93, 2015, doi: 10.36753/mathenot.421222.
ISNAD Kocayiğit, Hüseyin - Çetin, Muhammed. “SPACELIKE CURVES OF CONSTANT BREADTH ACCORDING TO BISHOP FRAME IN MINKOWSKI 3-SPACE”. Mathematical Sciences and Applications E-Notes 3/1 (May 2015), 86-93. https://doi.org/10.36753/mathenot.421222.
JAMA Kocayiğit H, Çetin M. SPACELIKE CURVES OF CONSTANT BREADTH ACCORDING TO BISHOP FRAME IN MINKOWSKI 3-SPACE. Math. Sci. Appl. E-Notes. 2015;3:86–93.
MLA Kocayiğit, Hüseyin and Muhammed Çetin. “SPACELIKE CURVES OF CONSTANT BREADTH ACCORDING TO BISHOP FRAME IN MINKOWSKI 3-SPACE”. Mathematical Sciences and Applications E-Notes, vol. 3, no. 1, 2015, pp. 86-93, doi:10.36753/mathenot.421222.
Vancouver Kocayiğit H, Çetin M. SPACELIKE CURVES OF CONSTANT BREADTH ACCORDING TO BISHOP FRAME IN MINKOWSKI 3-SPACE. Math. Sci. Appl. E-Notes. 2015;3(1):86-93.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.