Year 2017,
Volume: 5 Issue: 1, 27 - 33, 30.04.2017
Münevver Yıldırım Yılmaz
,
Mehmet Bektaş
References
- [1] Shima, H. The Geometry of Hessian structures, World Scientific Publ., 2007.
- [2] Shima, H., Homogeneous Hessian manifolds. Ann. Inst. Fourier, Grenoble,. 30, 3, (1980), 91-128.
- [3] Shima, H., A differential geometric characterization of homogeneous sel-dual cones. Tsukuba J. Math Vol. 6, no.1,
(1982), 79-88.
- [4] Bektas, M., Yildirim, M., Integral inequalities for submanifolds of Hessian manifolds with constant Hessian
sectional curvature. Iranian Journal of Sci. and Tech.Trans. A. Sci. vol.30, no.A2 (2006), 235-239.
- [5] Yildirim Yilmaz,M., Bektas, M., A Survey on curvatures of Hessian manifolds. Chaos, Solitons and Fractals 38,
(2008), 620-630.
- [6] Hineva, S., Submanifolds for which a lower bound of the Ricci curvature is achieved. J.Geom. 88, (2008), 53-69.
- [7] Cao,X.-F., Pseudo-umbilical submanifolds of constant curvature Riemannian manifolds, Glasgow Mathematical
Journal vol.43,no. 1 (2001), 129-133.
- [8] Yildirim Yilmaz, M. , Bektas, M. A Note on Pseudo-Umbilical Submanifolds of Hessian Manifolds with Constant
Hessian Sectional Curvature International Scholarly Research Network ISRN Geometry Vol.2011, (2011), 1-12.
Curvature Inequalities between a Hessian Manifold with Constant Curvature and its Submanifolds
Year 2017,
Volume: 5 Issue: 1, 27 - 33, 30.04.2017
Münevver Yıldırım Yılmaz
,
Mehmet Bektaş
Abstract
In this paper after a short description of Hessian manifolds, we establish new curvature inequalities
between a Hessian manifold and its submanifolds.
References
- [1] Shima, H. The Geometry of Hessian structures, World Scientific Publ., 2007.
- [2] Shima, H., Homogeneous Hessian manifolds. Ann. Inst. Fourier, Grenoble,. 30, 3, (1980), 91-128.
- [3] Shima, H., A differential geometric characterization of homogeneous sel-dual cones. Tsukuba J. Math Vol. 6, no.1,
(1982), 79-88.
- [4] Bektas, M., Yildirim, M., Integral inequalities for submanifolds of Hessian manifolds with constant Hessian
sectional curvature. Iranian Journal of Sci. and Tech.Trans. A. Sci. vol.30, no.A2 (2006), 235-239.
- [5] Yildirim Yilmaz,M., Bektas, M., A Survey on curvatures of Hessian manifolds. Chaos, Solitons and Fractals 38,
(2008), 620-630.
- [6] Hineva, S., Submanifolds for which a lower bound of the Ricci curvature is achieved. J.Geom. 88, (2008), 53-69.
- [7] Cao,X.-F., Pseudo-umbilical submanifolds of constant curvature Riemannian manifolds, Glasgow Mathematical
Journal vol.43,no. 1 (2001), 129-133.
- [8] Yildirim Yilmaz, M. , Bektas, M. A Note on Pseudo-Umbilical Submanifolds of Hessian Manifolds with Constant
Hessian Sectional Curvature International Scholarly Research Network ISRN Geometry Vol.2011, (2011), 1-12.