Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Year 2017, Volume 5, Issue 1, 64 - 69, 30.04.2017
https://doi.org/10.36753/mathenot.421700

Abstract

References

  • [1] Alzer, H., Inequalities for Euler’s gamma function, Forum Math., 20(6)(2008), 955–1004.
  • [2] Anderson, G.D. and Qiu, S.-L., A monotonicity property of the gamma function, Proc. Amer. Math. Soc., 125(1997), 3355–3362.
  • [3] Anderson, G.D., Vamanamurthy, M. K. and Vuorinen, M., Special functions of quasiconformal theory, Exposition. Math., 7(1989), 97-136.
  • [4] Batir, N., Inequalities for the gamma function, Arch. Math., 91(2008), 554–563.
  • [5] Chaudhry, M.A. and Zubair, S.M., Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., 55(1994), 99–124.
  • [6] Chaudhry, M.A., Qadir, A., Rafique, M. and Zubair, S.M., Extension of Euler’s beta function, J. Comput. Appl. Math., 78(1997), 19–32.
  • [7] Chaudhry, M.A. and Zubair, S.M., On the decomposition of generalized incomplete gamma functions with applications to Fourier transforms, J. Comput. Appl. Math., 59(1995), 253–284.
  • [8] Chaudhry, M.A. and Zubair, S.M., Extended incomplete gamma functions with applications, J. Math. Anal. Appl., 274(2002), 725–745.
  • [9] Conway, J.H. and Guy, R.K., The book of numbers, Springer-Verlag, New York, 1996.
  • [10] Dil, A. and Mezö, I., A symmetric algorithm hyperharmonic and Fibonacci numbers, Appl. Math. Comput., 206(2008), 942–951.
  • [11] Graham, R.L., Knuth, D.E. and Patashnik, O., Concrete mathematics, Addison Wesley, 1993.
  • [12] Whittaker, E.T. and Watson, G.N., A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1958.

On the hyper-gamma function

Year 2017, Volume 5, Issue 1, 64 - 69, 30.04.2017
https://doi.org/10.36753/mathenot.421700

Abstract

In this paper, we introduce a new generalization for the gamma function as hyper-gamma function. Some identities and integral representation are obtained for the this new generalization.

References

  • [1] Alzer, H., Inequalities for Euler’s gamma function, Forum Math., 20(6)(2008), 955–1004.
  • [2] Anderson, G.D. and Qiu, S.-L., A monotonicity property of the gamma function, Proc. Amer. Math. Soc., 125(1997), 3355–3362.
  • [3] Anderson, G.D., Vamanamurthy, M. K. and Vuorinen, M., Special functions of quasiconformal theory, Exposition. Math., 7(1989), 97-136.
  • [4] Batir, N., Inequalities for the gamma function, Arch. Math., 91(2008), 554–563.
  • [5] Chaudhry, M.A. and Zubair, S.M., Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., 55(1994), 99–124.
  • [6] Chaudhry, M.A., Qadir, A., Rafique, M. and Zubair, S.M., Extension of Euler’s beta function, J. Comput. Appl. Math., 78(1997), 19–32.
  • [7] Chaudhry, M.A. and Zubair, S.M., On the decomposition of generalized incomplete gamma functions with applications to Fourier transforms, J. Comput. Appl. Math., 59(1995), 253–284.
  • [8] Chaudhry, M.A. and Zubair, S.M., Extended incomplete gamma functions with applications, J. Math. Anal. Appl., 274(2002), 725–745.
  • [9] Conway, J.H. and Guy, R.K., The book of numbers, Springer-Verlag, New York, 1996.
  • [10] Dil, A. and Mezö, I., A symmetric algorithm hyperharmonic and Fibonacci numbers, Appl. Math. Comput., 206(2008), 942–951.
  • [11] Graham, R.L., Knuth, D.E. and Patashnik, O., Concrete mathematics, Addison Wesley, 1993.
  • [12] Whittaker, E.T. and Watson, G.N., A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1958.

Details

Primary Language English
Journal Section Articles
Authors

Mustafa BAHŞİ
0000-0002-6356-6592


Süleyman SOLAK

Publication Date April 30, 2017
Application Date February 18, 2016
Acceptance Date September 20, 2021
Published in Issue Year 2017, Volume 5, Issue 1

Cite

Bibtex @research article { mathenot421700, journal = {Mathematical Sciences and Applications E-Notes}, issn = {}, eissn = {2147-6268}, address = {}, publisher = {Murat TOSUN}, year = {2017}, volume = {5}, pages = {64 - 69}, doi = {10.36753/mathenot.421700}, title = {On the hyper-gamma function}, key = {cite}, author = {Bahşi, Mustafa and Solak, Süleyman} }
APA Bahşi, M. & Solak, S. (2017). On the hyper-gamma function . Mathematical Sciences and Applications E-Notes , 5 (1) , 64-69 . DOI: 10.36753/mathenot.421700
MLA Bahşi, M. , Solak, S. "On the hyper-gamma function" . Mathematical Sciences and Applications E-Notes 5 (2017 ): 64-69 <https://dergipark.org.tr/en/pub/mathenot/issue/36897/421700>
Chicago Bahşi, M. , Solak, S. "On the hyper-gamma function". Mathematical Sciences and Applications E-Notes 5 (2017 ): 64-69
RIS TY - JOUR T1 - On the hyper-gamma function AU - Mustafa Bahşi , Süleyman Solak Y1 - 2017 PY - 2017 N1 - doi: 10.36753/mathenot.421700 DO - 10.36753/mathenot.421700 T2 - Mathematical Sciences and Applications E-Notes JF - Journal JO - JOR SP - 64 EP - 69 VL - 5 IS - 1 SN - -2147-6268 M3 - doi: 10.36753/mathenot.421700 UR - https://doi.org/10.36753/mathenot.421700 Y2 - 2021 ER -
EndNote %0 Mathematical Sciences and Applications E-Notes On the hyper-gamma function %A Mustafa Bahşi , Süleyman Solak %T On the hyper-gamma function %D 2017 %J Mathematical Sciences and Applications E-Notes %P -2147-6268 %V 5 %N 1 %R doi: 10.36753/mathenot.421700 %U 10.36753/mathenot.421700
ISNAD Bahşi, Mustafa , Solak, Süleyman . "On the hyper-gamma function". Mathematical Sciences and Applications E-Notes 5 / 1 (April 2017): 64-69 . https://doi.org/10.36753/mathenot.421700
AMA Bahşi M. , Solak S. On the hyper-gamma function. Math. Sci. Appl. E-Notes. 2017; 5(1): 64-69.
Vancouver Bahşi M. , Solak S. On the hyper-gamma function. Mathematical Sciences and Applications E-Notes. 2017; 5(1): 64-69.
IEEE M. Bahşi and S. Solak , "On the hyper-gamma function", Mathematical Sciences and Applications E-Notes, vol. 5, no. 1, pp. 64-69, Apr. 2017, doi:10.36753/mathenot.421700

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.