[3] Andrijevic´, D., Jelic´, M. and Mrševic´, M., Some properties of Hyperspaces of Cˇ ech closure spaces with Vietorislike
Topologies. Filomat 24 (2010), 53-61.
[4] Akin, E., The general topology of dynamical systems. Providence: Amer. Math. Soc., 1993.
[5] Burgess, D.C.J. and McCartan, S. D., Order-continuous functions and order-connected spaces. Proc. Camb. Phill.
Soc. 68 (1970), 27-31.
[6]Cech, E., Topological spaces. Czechoslovak Acad. of Sciences, Prague, 1966.
[7] Michael, E., Topologies on spaces of subsets. Trans. Amer. Math.Soc. 71 (1951), 152-183.
[8] Beer, G., Topologies on Closed and Closed Convex Sets. Mathematics and its Application, 268, Kluwer Academic
Publisher, Dordrecht, 1993.
[9] Gierz, G., HofmannK. H., Keimel, K., Lawson, J.D., Mislove, M.W. and Scott, D.S., Continuous Lattices and
Domains. Cambridge University Press, 2003.
[10] Priestly, H. A. and Davey, B. A., Introduction to Lattices and Order. Cambridge University Press, Cambridge,
1990.
[11] Eroglu, I. and Guner, E., Separation axioms in Cˇ ech closure ordered spaces. Commun. Fac. Sci. Univ. Ank. Ser A1
Math. Stat. 65 (2016), no.2, 1-10.
[12] Slapal, J., A digital anologue of the Jordan Curve theorem. Discrete Applied Mathematics 139 (2004), 231-251.
[13] Chandrasekhara Rao, K., Gowri, R. and Swaminathan, V., Cech Closure Space in Structural Configuration of
Proteins. Advanced Studies in Biology 1 (2009), no.2, 95-104.
[14] Nachbin, L., Topology and order. Van Nonstrand Mathematical Studies 4, Princeton, N. J., 1965.
[15] Mrševi´c, M. and Andrijevi´c, D., On -connectedness and -closure spaces. Topology and its Application 123 (2002),
157-166.
[16] Mrševi´c, M., Proper and admissible topologies in closure spaces. Indian J. Pure Appl. Math. 36 (2005), 613-627.
[17] Mrševi´c, M. and Jeli´c, M., Selection principles in Hyperspaces with generalized Vietoris topologies. Topology
and its Applications 156 (2008), 124-129.
[18] Evren, Ö. and Ok, E.A., On the muti-utility representation of preference relations. Journal of Mathematical
Economics 47 (2011), 554-563.
[19] Bade, S., Nash equilibrium in games with incomplete preferences. Economic theory 26 (2005), 309-332.
[20] McCartan, S. D., Separation axioms for topological ordered spaces. Proc. Camb. Phill. Soc. 64 (1968), 965-973.
[21] McCartan, S. D., A quotient ordered spaces. Proc. Camb. Phill. Soc. 64 (1968), 317-322.
[22] McCartan, S. D., Bicontinuous preordered topological spaces. Pasific J. Math. 38 (1971), 523-529.
[23] Choe, T. H. and Park, Y. S., Embedding Ordered topological spaces into topological semilattices. Semigroup
Forum 17 (1979), 188-199.
[24] Thron,W. J., What results are Valid on Closure Spaces. Topology Proceedings 6 (1981), 135-158.
[25] Park, Y. S. andW.T. Park, On Ordered Hyperspaces. J. Korean Math. Soc. 19 (1982), no. 1, 11-17.
Year 2018,
Volume: 6 Issue: 2, 38 - 45, 31.10.2018
[3] Andrijevic´, D., Jelic´, M. and Mrševic´, M., Some properties of Hyperspaces of Cˇ ech closure spaces with Vietorislike
Topologies. Filomat 24 (2010), 53-61.
[4] Akin, E., The general topology of dynamical systems. Providence: Amer. Math. Soc., 1993.
[5] Burgess, D.C.J. and McCartan, S. D., Order-continuous functions and order-connected spaces. Proc. Camb. Phill.
Soc. 68 (1970), 27-31.
[6]Cech, E., Topological spaces. Czechoslovak Acad. of Sciences, Prague, 1966.
[7] Michael, E., Topologies on spaces of subsets. Trans. Amer. Math.Soc. 71 (1951), 152-183.
[8] Beer, G., Topologies on Closed and Closed Convex Sets. Mathematics and its Application, 268, Kluwer Academic
Publisher, Dordrecht, 1993.
[9] Gierz, G., HofmannK. H., Keimel, K., Lawson, J.D., Mislove, M.W. and Scott, D.S., Continuous Lattices and
Domains. Cambridge University Press, 2003.
[10] Priestly, H. A. and Davey, B. A., Introduction to Lattices and Order. Cambridge University Press, Cambridge,
1990.
[11] Eroglu, I. and Guner, E., Separation axioms in Cˇ ech closure ordered spaces. Commun. Fac. Sci. Univ. Ank. Ser A1
Math. Stat. 65 (2016), no.2, 1-10.
[12] Slapal, J., A digital anologue of the Jordan Curve theorem. Discrete Applied Mathematics 139 (2004), 231-251.
[13] Chandrasekhara Rao, K., Gowri, R. and Swaminathan, V., Cech Closure Space in Structural Configuration of
Proteins. Advanced Studies in Biology 1 (2009), no.2, 95-104.
[14] Nachbin, L., Topology and order. Van Nonstrand Mathematical Studies 4, Princeton, N. J., 1965.
[15] Mrševi´c, M. and Andrijevi´c, D., On -connectedness and -closure spaces. Topology and its Application 123 (2002),
157-166.
[16] Mrševi´c, M., Proper and admissible topologies in closure spaces. Indian J. Pure Appl. Math. 36 (2005), 613-627.
[17] Mrševi´c, M. and Jeli´c, M., Selection principles in Hyperspaces with generalized Vietoris topologies. Topology
and its Applications 156 (2008), 124-129.
[18] Evren, Ö. and Ok, E.A., On the muti-utility representation of preference relations. Journal of Mathematical
Economics 47 (2011), 554-563.
[19] Bade, S., Nash equilibrium in games with incomplete preferences. Economic theory 26 (2005), 309-332.
[20] McCartan, S. D., Separation axioms for topological ordered spaces. Proc. Camb. Phill. Soc. 64 (1968), 965-973.
[21] McCartan, S. D., A quotient ordered spaces. Proc. Camb. Phill. Soc. 64 (1968), 317-322.
[22] McCartan, S. D., Bicontinuous preordered topological spaces. Pasific J. Math. 38 (1971), 523-529.
[23] Choe, T. H. and Park, Y. S., Embedding Ordered topological spaces into topological semilattices. Semigroup
Forum 17 (1979), 188-199.
[24] Thron,W. J., What results are Valid on Closure Spaces. Topology Proceedings 6 (1981), 135-158.
[25] Park, Y. S. andW.T. Park, On Ordered Hyperspaces. J. Korean Math. Soc. 19 (1982), no. 1, 11-17.
Eroğlu, İ., Sağıroğlu, S., & Güner, E. (2018). On Ordered Hyperspace Topologies in the Setting of Cech Closure Ordered Spaces. Mathematical Sciences and Applications E-Notes, 6(2), 38-45.
AMA
Eroğlu İ, Sağıroğlu S, Güner E. On Ordered Hyperspace Topologies in the Setting of Cech Closure Ordered Spaces. Math. Sci. Appl. E-Notes. October 2018;6(2):38-45.
Chicago
Eroğlu, İrem, Sevda Sağıroğlu, and Erdal Güner. “On Ordered Hyperspace Topologies in the Setting of Cech Closure Ordered Spaces”. Mathematical Sciences and Applications E-Notes 6, no. 2 (October 2018): 38-45.
EndNote
Eroğlu İ, Sağıroğlu S, Güner E (October 1, 2018) On Ordered Hyperspace Topologies in the Setting of Cech Closure Ordered Spaces. Mathematical Sciences and Applications E-Notes 6 2 38–45.
IEEE
İ. Eroğlu, S. Sağıroğlu, and E. Güner, “On Ordered Hyperspace Topologies in the Setting of Cech Closure Ordered Spaces”, Math. Sci. Appl. E-Notes, vol. 6, no. 2, pp. 38–45, 2018.
ISNAD
Eroğlu, İrem et al. “On Ordered Hyperspace Topologies in the Setting of Cech Closure Ordered Spaces”. Mathematical Sciences and Applications E-Notes 6/2 (October 2018), 38-45.
JAMA
Eroğlu İ, Sağıroğlu S, Güner E. On Ordered Hyperspace Topologies in the Setting of Cech Closure Ordered Spaces. Math. Sci. Appl. E-Notes. 2018;6:38–45.
MLA
Eroğlu, İrem et al. “On Ordered Hyperspace Topologies in the Setting of Cech Closure Ordered Spaces”. Mathematical Sciences and Applications E-Notes, vol. 6, no. 2, 2018, pp. 38-45.
Vancouver
Eroğlu İ, Sağıroğlu S, Güner E. On Ordered Hyperspace Topologies in the Setting of Cech Closure Ordered Spaces. Math. Sci. Appl. E-Notes. 2018;6(2):38-45.