[1] Allen, P.J., A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc., 21 (1969), 412-416.
[2] Bresar, M. and Vukman, J., On the left derivation and related mappings, Proc. Amer. Math. Soc., 10 (1990), 7-16.
[3] Dutta, T.K. and Kar, S., On regular ternary semirings, Advances in Algebra, Proceedings of the ICM Satellite
Conference in Algebra and Related Topics,World Scientific, (2003) 343-355.
[4] Javed, M.A., Aslam, M. and Hussain, M., On derivations of prime Γ-semirings, Southeast Asian Bull. of Math.,
37 (2013), 859-865.
[5] Lehmer, H., A ternary analogue of abelian groups, Amer. J. of Math., 59 (1932), 329-338.
[1] Allen, P.J., A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc., 21 (1969), 412-416.
[2] Bresar, M. and Vukman, J., On the left derivation and related mappings, Proc. Amer. Math. Soc., 10 (1990), 7-16.
[3] Dutta, T.K. and Kar, S., On regular ternary semirings, Advances in Algebra, Proceedings of the ICM Satellite
Conference in Algebra and Related Topics,World Scientific, (2003) 343-355.
[4] Javed, M.A., Aslam, M. and Hussain, M., On derivations of prime Γ-semirings, Southeast Asian Bull. of Math.,
37 (2013), 859-865.
[5] Lehmer, H., A ternary analogue of abelian groups, Amer. J. of Math., 59 (1932), 329-338.
Venkateswarlu, B., Rao, M. M. K., & Narayana, Y. A. (2019). Orthogonal Reverse Derivations on semiprime Γ-semirings. Mathematical Sciences and Applications E-Notes, 7(1), 71-77. https://doi.org/10.36753/mathenot.559255
AMA
Venkateswarlu B, Rao MMK, Narayana YA. Orthogonal Reverse Derivations on semiprime Γ-semirings. Math. Sci. Appl. E-Notes. April 2019;7(1):71-77. doi:10.36753/mathenot.559255
Chicago
Venkateswarlu, B., M. Murali Krishna Rao, and Y. Adi Narayana. “Orthogonal Reverse Derivations on Semiprime Γ-Semirings”. Mathematical Sciences and Applications E-Notes 7, no. 1 (April 2019): 71-77. https://doi.org/10.36753/mathenot.559255.
EndNote
Venkateswarlu B, Rao MMK, Narayana YA (April 1, 2019) Orthogonal Reverse Derivations on semiprime Γ-semirings. Mathematical Sciences and Applications E-Notes 7 1 71–77.
IEEE
B. Venkateswarlu, M. M. K. Rao, and Y. A. Narayana, “Orthogonal Reverse Derivations on semiprime Γ-semirings”, Math. Sci. Appl. E-Notes, vol. 7, no. 1, pp. 71–77, 2019, doi: 10.36753/mathenot.559255.
ISNAD
Venkateswarlu, B. et al. “Orthogonal Reverse Derivations on Semiprime Γ-Semirings”. Mathematical Sciences and Applications E-Notes 7/1 (April2019), 71-77. https://doi.org/10.36753/mathenot.559255.
JAMA
Venkateswarlu B, Rao MMK, Narayana YA. Orthogonal Reverse Derivations on semiprime Γ-semirings. Math. Sci. Appl. E-Notes. 2019;7:71–77.
MLA
Venkateswarlu, B. et al. “Orthogonal Reverse Derivations on Semiprime Γ-Semirings”. Mathematical Sciences and Applications E-Notes, vol. 7, no. 1, 2019, pp. 71-77, doi:10.36753/mathenot.559255.
Vancouver
Venkateswarlu B, Rao MMK, Narayana YA. Orthogonal Reverse Derivations on semiprime Γ-semirings. Math. Sci. Appl. E-Notes. 2019;7(1):71-7.