Year 2019, Volume 7 , Issue 2, Pages 191 - 194 2019-10-15

Relations among Bell polynomials, central factorial numbers, and central Bell polynomials

Feng Qi [1] , Bai-Ni Guo [2]


In the note, by virtue of the Fa\`a di Bruno formula and two identities for the Bell polynomials of the second kind, the authors derive three relations among the Bell polynomials, central factorial numbers of the second kind, and central Bell polynomials.
Bell polynomial; central factorial number of the second kind; central Bell polynomial; Bell polynomial of the second kind; Fa\`a di Bruno formula
  • \begin{thebibliography}{99}
  • \bibitem{BSSV-NFAO-1989}P. L. Butzer, M. Schmidt, E. L. Stark, and L. Vogt, \emph{Central factorial numbers; their main properties and some applications}, Numer. Funct. Anal. Optim. \textbf{10} (1989), no.~5-6, 419\nobreakdash--488; Available online at \url{https://doi.org/10.1080/01630568908816313}.
  • \bibitem{Charalambides-book-2002}C. A. Charalambides, \textit{Enumerative Combinatorics}, CRC Press Series on Discrete Mathematics and its Applications. Chapman \& Hall/CRC, Boca Raton, FL, 2002.
  • \bibitem{Comtet-Combinatorics-74}L. Comtet, \textit{Advanced Combinatorics: The Art of Finite and Infinite Expansions}, Revised and Enlarged Edition, D. Reidel Publishing Co., 1974; Available online at \url{https://doi.org/10.1007/978-94-010-2196-8}.
  • \bibitem{Bell-Stirling-HyperGeom.tex}B.-N. Guo and F. Qi, \textit{An explicit formula for Bell numbers in terms of Stirling numbers and hypergeometric functions}, Glob. J. Math. Anal. \textbf{2} (2014), no.~4, 243\nobreakdash--248; Available online at \url{http://dx.doi.org/10.14419/gjma.v2i4.3310}.
  • \bibitem{Kim-Jang-Dolgy-Kim-ASCM-2019}D. S. Kim, G.-W. Jang, D. V. Dolgy, and T. Kim, \textit{An expression for central Bell polynomials}, Adv. Stud. Contemp. Math. \textbf{29} (2019), no.~2, 257\nobreakdash--262; Available online at \url{http://dx.doi.org/10.17777/ascm2019.29.2.257}.
  • \bibitem{Kim2Russ-2019}T. Kim and D. S. Kim, \textit{A note on central Bell numbers and polynomials}, to appear in Russ. J. Math. Phys. (2019), in press.
  • \bibitem{Merca-Period-2016}M. Merca, \emph{Connections between central factorial numbers and Bernoulli polynomials}, Period. Math. Hungar. \textbf{73} (2016), no.~2, 259\nobreakdash--264; Available online at \url{https://doi.org/10.1007/s10998-016-0140-5}.
  • \bibitem{Bell-Stirling-Lah-simp.tex}F. Qi, \textit{An explicit formula for the Bell numbers in terms of the Lah and Stirling numbers}, Mediterr. J. Math. \textbf{13} (2016), no.~5, 2795\nobreakdash--2800; Available online at \url{https://doi.org/10.1007/s00009-015-0655-7}.
  • \bibitem{Log-Poly-Prop-IIS.tex}F. Qi, \textit{Integral representations for multivariate logarithmic polynomials}, J. Comput. Appl. Math. \textbf{336} (2018), 54\nobreakdash--62; Available online at \url{https://doi.org/10.1016/j.cam.2017.11.047}.
  • \bibitem{Log-Poly-Prop.tex}F. Qi, \textit{On multivariate logarithmic polynomials and their properties}, Indag. Math. (N.S.) \textbf{29} (2018), no.~5, 1179\nobreakdash--1192; Available online at \url{https://doi.org/10.1016/j.indag.2018.04.002}.
  • \bibitem{K2Jang-ascm17.tex}F. Qi, \textit{Simplifying coefficients in differential equations related to generating functions of reverse Bessel and partially degenerate Bell polynomials}, Bol. Soc. Paran. Mat. \textbf{39} (2021), no.~4, in press; Available online at \url{http://dx.doi.org/10.5269/bspm.41758}.
  • \bibitem{MIA-6530.tex}F. Qi, \textit{Some inequalities and an application of exponential polynomials}, Math. Inequal. Appl. \textbf{22} (2019), in press; Available online at \url{https://doi.org/10.7153/mia-2019-22-??}.
  • \bibitem{Bell-Num-Ineq.tex}F. Qi, \textit{Some inequalities for the Bell numbers}, Proc. Indian Acad. Sci. Math. Sci. \textbf{127} (2017), no.~4, 551\nobreakdash--564; Available online at \url{https://doi.org/10.1007/s12044-017-0355-2}.
  • \bibitem{Det-Tri-Diag-S.tex}F. Qi, V. \v{C}er\v{n}anov\'a, and Y. S. Semenov, \textit{Some tridiagonal determinants related to central Delannoy numbers, the Chebyshev polynomials, and the Fibonacci polynomials}, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. \textbf{81} (2019), no.~1, 123\nobreakdash--136.
  • \bibitem{Spec-Bell2Euler-S.tex}F. Qi and B.-N. Guo, \textit{Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials}, Mediterr. J. Math. \textbf{14} (2017), no.~3, Article~140, 14~pages; Available online at \url{https://doi.org/10.1007/s00009-017-0939-1}.
  • \bibitem{Qi-Lim-Zhao-Bell.tex}F. Qi, D. Lim, and B.-N. Guo, \emph{Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations}, Rev. R. Acad. Cienc. Exactas F\'is. Nat. Ser. A Mat. RACSAM \textbf{113} (2019), no.~1, 1\nobreakdash--9; Available online at \url{https://doi.org/10.1007/s13398-017-0427-2}.
  • \bibitem{Char-Bell-Qi-MNN.tex}F. Qi, D. Lim, and Y.-H. Yao, \textit{Notes on two kinds of special values for the Bell polynomials of the second kind}, Miskolc Math. Notes \textbf{20} (2019), no.~2, in press; Available online at \url{https://doi.org/10.18514/MMN.2019.2635}.
  • \bibitem{QLG-RACSAM-Ext.tex}F. Qi, D.-W. Niu, and B.-N. Guo, \textit{Some identities for a sequence of unnamed polynomials connected with the Bell polynomials}, Rev. R. Acad. Cienc. Exactas F\'is. Nat. Ser. A Math. RACSAM \textbf{113} (2019), no.~2, 557\nobreakdash--567; Available online at \url{https://doi.org/10.1007/s13398-018-0494-z}.
  • \bibitem{Bell-Poly-Gen-Boy.tex}F. Qi, D.-W. Niu, D. Lim, and B.-N. Guo, \emph{Some properties and an application of multivariate exponential polynomials}, HAL archives (2018), available online at \url{https://hal.archives-ouvertes.fr/hal-01745173}.
  • \bibitem{Bell-value-elem-funct.tex}F. Qi, D.-W. Niu, D. Lim, and Y.-H. Yao, \textit{Special values of the Bell polynomials of the second kind for some sequences and functions}, HAL archives (2018), available online at \url{https://hal.archives-ouvertes.fr/hal-01766566}.
  • \bibitem{Deriv-Arcs-Cos.tex}F. Qi and M.-M. Zheng, \textit{Explicit expressions for a family of the Bell polynomials and applications}, Appl. Math. Comput. \textbf{258} (2015), 597\nobreakdash--607; Available online at \url{https://doi.org/10.1016/j.amc.2015.02.027}.
  • \bibitem{centr-bell-polyn.tex}F. Qi, G.-S. Wu, and B.-N. Guo, \textit{An alternative proof of a closed formula for central factorial numbers of the second kind}, submitted.
  • \bibitem{Euler-No-3Sum.tex}C.-F. Wei and F. Qi, \textit{Several closed expressions for the Euler numbers}, J. Inequal. Appl. 2015, \textbf{2015}:219, 8~pages; Available online at \url{https://doi.org/10.1186/s13660-015-0738-9}.
  • \end{thebibliography}
Primary Language en
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0001-6239-2968
Author: Feng Qi
Institution: Inner Mongolia University for Nationalities
Country: China


Orcid: 0000-0001-6156-2590
Author: Bai-Ni Guo (Primary Author)
Institution: Henan Polytechnic University
Country: China


Dates

Publication Date : October 15, 2019

Bibtex @short communication { mathenot566448, journal = {Mathematical Sciences and Applications E-Notes}, issn = {}, eissn = {2147-6268}, address = {}, publisher = {Murat TOSUN}, year = {2019}, volume = {7}, pages = {191 - 194}, doi = {10.36753/mathenot.566448}, title = {Relations among Bell polynomials, central factorial numbers, and central Bell polynomials}, key = {cite}, author = {Qi, Feng and Guo, Bai-Ni} }
APA Qi, F , Guo, B . (2019). Relations among Bell polynomials, central factorial numbers, and central Bell polynomials. Mathematical Sciences and Applications E-Notes , 7 (2) , 191-194 . DOI: 10.36753/mathenot.566448
MLA Qi, F , Guo, B . "Relations among Bell polynomials, central factorial numbers, and central Bell polynomials". Mathematical Sciences and Applications E-Notes 7 (2019 ): 191-194 <https://dergipark.org.tr/en/pub/mathenot/issue/49271/566448>
Chicago Qi, F , Guo, B . "Relations among Bell polynomials, central factorial numbers, and central Bell polynomials". Mathematical Sciences and Applications E-Notes 7 (2019 ): 191-194
RIS TY - JOUR T1 - Relations among Bell polynomials, central factorial numbers, and central Bell polynomials AU - Feng Qi , Bai-Ni Guo Y1 - 2019 PY - 2019 N1 - doi: 10.36753/mathenot.566448 DO - 10.36753/mathenot.566448 T2 - Mathematical Sciences and Applications E-Notes JF - Journal JO - JOR SP - 191 EP - 194 VL - 7 IS - 2 SN - -2147-6268 M3 - doi: 10.36753/mathenot.566448 UR - https://doi.org/10.36753/mathenot.566448 Y2 - 2019 ER -
EndNote %0 Mathematical Sciences and Applications E-Notes Relations among Bell polynomials, central factorial numbers, and central Bell polynomials %A Feng Qi , Bai-Ni Guo %T Relations among Bell polynomials, central factorial numbers, and central Bell polynomials %D 2019 %J Mathematical Sciences and Applications E-Notes %P -2147-6268 %V 7 %N 2 %R doi: 10.36753/mathenot.566448 %U 10.36753/mathenot.566448
ISNAD Qi, Feng , Guo, Bai-Ni . "Relations among Bell polynomials, central factorial numbers, and central Bell polynomials". Mathematical Sciences and Applications E-Notes 7 / 2 (October 2019): 191-194 . https://doi.org/10.36753/mathenot.566448
AMA Qi F , Guo B . Relations among Bell polynomials, central factorial numbers, and central Bell polynomials. Math. Sci. Appl. E-Notes. 2019; 7(2): 191-194.
Vancouver Qi F , Guo B . Relations among Bell polynomials, central factorial numbers, and central Bell polynomials. Mathematical Sciences and Applications E-Notes. 2019; 7(2): 194-191.