Some Remarks on MCI Crossed Modules
Year 2020,
Volume: 8 Issue: 1, 193 - 201, 20.03.2020
Kadir Emir
Abstract
In an earlier work, it is proven that the category of crossed modules in a modified category of interest
(MCI crossed modules) is finitely complete with a certain condition, in which all codomains are fixed. In
this paper, we prove that this is also true without any restriction.
Supporting Institution
The author was supported by the projects Mathematical Structures 9 (MUNI/A/0885/2019), and Group Techniques and Quantum Information (MUNI/G/1211/2017) by Masaryk University Grant Agency (GAMU).
References
-
[1] Alp, M., Davvaz, M.: Crossed polymodules and fundamental relations. Sci. Bull., Ser. A, Appl. Math. Phys., Politeh.
Univ. Buchar., 77(2):129–140 (2015).
-
[2] Aytekin, A., Casas, J.M., Uslu, E. Ö.: Semi-complete crossed modules of Lie algebras. J. Algebra Appl., 11(5):1250096,
24 (2012).
-
[3] Aytekin, A., Emir, K.: Colimits of crossed modules in modified categories of interest. Preprint.
-
[4] Boyaci, Y., Casas, J.M., Datuashvili, T., Uslu, E.Ö.: Actions in modified categories of interest with application to
crossed modules. Theory Appl. Categ., 30:882–908 (2015).
-
[5] Brown, R.: Modelling and computing homotopy types: I. Indag. Math., New Ser., 29(1):459–482 (2018).
-
[6] Casas, J.M., Casado, R.F., Khmaladze, E., Ladra, M.: More on crossed modules in Lie, Leibniz, associative and
diassociative algebras. J. Algebra Appl., 16(6):17 (2017).
-
[7] Crans, A.S., Wagemann, F.: Crossed modules of racks. Homology Homotopy Appl., 16(2):85–106 (2014).
-
[8] Emir, K., Çetin, S.: Limits in modified categories of interest. Bull. Iran. Math. Soc., 43(7):2617–2634 (2017).
-
[9] Emir, K., Gülsün Akay, H.: Pullback crossed modules in the category of racks. Hacet. J. Math. Stat., 48(1):140–149
(2019).
-
[10] Faria Martins, J.: Crossed modules of Hopf algebras and of associative algebras and two-dimensional holonomy. J. Geom.
Phys., 99:68–110 (2016).
-
[11] Gülsün Akay, H., Akça, İ.: Completeness of the category of rack crossed modules. Preprint.
-
[12] Higgins, P.J.: Groups with multiple operators. Proc. Lond. Math. Soc. (3), 6:366–416 (1956).
-
[13] Mucuk, O., Şahan, T.: Group-groupoid actions and liftings of crossed modules. Georgian Math. J., 26(3):437–447
(2019).
-
[14] Orzech, G.: Obstruction theory in algebraic categories. I-II. J. Pure Appl. Algebra, 2:287–340 (1972).
-
[15] Porter, T.: Extensions, crossed modules and internal categories in categories of groups with operations. Proc. Edinb.
Math. Soc., II. Ser., 30:373–381 (1987).
-
[16] Whitehead, J.H.C.: On adding relations to homotopy groups. Ann. of Math. (2) (1941).
-
[17] Yavari, M., Salemkar, A.: The category of generalized crossed modules. Categ. Gen. Algebr. Struct. Appl. 10(1):157–
171 (2019).