Year 2020, Volume 8 , Issue 1, Pages 25 - 28 2020-03-20

Some Involutions which Generate the Finite Symmetric Group

Leyla BUGAY [1]


Let $S_{n}$ be the symmetric group on $X_{n}=\{1, \dots, n\}$, for $n\geq 2$. In this paper we state some properties of subsemigroups generated by two involutions (a permutation with degree $2$) $\alpha,\beta$ such that $\alpha\beta$ is an $n$-cycle, and then state some generating sets of $S_n$ consists of involutions.
Symmetric group, involution, generating set
  • Ay\i k, G., Ay\i k, H., Bugay, L. and Kelekci, O., Generating sets of finite singular transformation semigroups, Semigroup Forum, 86 (2013), 59--66.
  • Bugay, L., Quasi-idempotent ranks of some permutation groups and transformation semigroups, Turk. J. Math., Accepted.
  • Ganyushkin, O. and Mazorchuk, V., Classical Finite Transformation Semigroups, Springer-Verlag, London, 2009.
  • Garba, G. U., Idempotents in partial transformation semigroups, Proc. Royal Soc. Edinburgh, 116A (1990), 359--366.
  • Garba, G. U., On the idempotent ranks of certain semigroups of order-preserving transformations,. Portugal. Math., 51 (1994) 185--204.
  • Garba, G. U. and Imam, A. T., Products of quasi-idempotents in finite symmetric inverse semigroups, Semigroup Forum, 92 (2016), 645--658.
  • Howie, J. M., Idempotent generators in finite full transformation semigroups, Proc. Royal Soc. Edinburgh, 81A (1978), 317--323.
  • Howie, J. M., Fundamentals of Semigroup Theory, New York, Oxford University Press, 1995.
  • Isaacs I. M., Finite Group Theory, American Mathematical Society, Graduate Studies in Mathematics, Volume 92, United States of America, 2008.
Primary Language en
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0002-8316-2763
Author: Leyla BUGAY (Primary Author)
Institution: Çukurova Üniversity
Country: Turkey


Dates

Publication Date : March 20, 2020

Bibtex @research article { mathenot608443, journal = {Mathematical Sciences and Applications E-Notes}, issn = {}, eissn = {2147-6268}, address = {}, publisher = {Murat TOSUN}, year = {2020}, volume = {8}, pages = {25 - 28}, doi = {10.36753/mathenot.608443}, title = {Some Involutions which Generate the Finite Symmetric Group}, key = {cite}, author = {BUGAY, Leyla} }
APA BUGAY, L . (2020). Some Involutions which Generate the Finite Symmetric Group. Mathematical Sciences and Applications E-Notes , 8 (1) , 25-28 . DOI: 10.36753/mathenot.608443
MLA BUGAY, L . "Some Involutions which Generate the Finite Symmetric Group". Mathematical Sciences and Applications E-Notes 8 (2020 ): 25-28 <https://dergipark.org.tr/en/pub/mathenot/issue/53229/608443>
Chicago BUGAY, L . "Some Involutions which Generate the Finite Symmetric Group". Mathematical Sciences and Applications E-Notes 8 (2020 ): 25-28
RIS TY - JOUR T1 - Some Involutions which Generate the Finite Symmetric Group AU - Leyla BUGAY Y1 - 2020 PY - 2020 N1 - doi: 10.36753/mathenot.608443 DO - 10.36753/mathenot.608443 T2 - Mathematical Sciences and Applications E-Notes JF - Journal JO - JOR SP - 25 EP - 28 VL - 8 IS - 1 SN - -2147-6268 M3 - doi: 10.36753/mathenot.608443 UR - https://doi.org/10.36753/mathenot.608443 Y2 - 2020 ER -
EndNote %0 Mathematical Sciences and Applications E-Notes Some Involutions which Generate the Finite Symmetric Group %A Leyla BUGAY %T Some Involutions which Generate the Finite Symmetric Group %D 2020 %J Mathematical Sciences and Applications E-Notes %P -2147-6268 %V 8 %N 1 %R doi: 10.36753/mathenot.608443 %U 10.36753/mathenot.608443
ISNAD BUGAY, Leyla . "Some Involutions which Generate the Finite Symmetric Group". Mathematical Sciences and Applications E-Notes 8 / 1 (March 2020): 25-28 . https://doi.org/10.36753/mathenot.608443
AMA BUGAY L . Some Involutions which Generate the Finite Symmetric Group. Math. Sci. Appl. E-Notes. 2020; 8(1): 25-28.
Vancouver BUGAY L . Some Involutions which Generate the Finite Symmetric Group. Mathematical Sciences and Applications E-Notes. 2020; 8(1): 28-25.