Research Article
BibTex RIS Cite

Some Involutions which Generate the Finite Symmetric Group

Year 2020, Volume: 8 Issue: 1, 25 - 28, 20.03.2020
https://doi.org/10.36753/mathenot.608443

Abstract

Let $S_{n}$ be the symmetric group on $X_{n}=\{1, \dots, n\}$, for $n\geq 2$. In this paper we state some properties of subsemigroups generated by two involutions (a permutation with degree $2$) $\alpha,\beta$ such that $\alpha\beta$ is an $n$-cycle, and then state some generating sets of $S_n$ consists of involutions.

References

  • Ay\i k, G., Ay\i k, H., Bugay, L. and Kelekci, O., Generating sets of finite singular transformation semigroups, Semigroup Forum, 86 (2013), 59--66.
  • Bugay, L., Quasi-idempotent ranks of some permutation groups and transformation semigroups, Turk. J. Math., Accepted.
  • Ganyushkin, O. and Mazorchuk, V., Classical Finite Transformation Semigroups, Springer-Verlag, London, 2009.
  • Garba, G. U., Idempotents in partial transformation semigroups, Proc. Royal Soc. Edinburgh, 116A (1990), 359--366.
  • Garba, G. U., On the idempotent ranks of certain semigroups of order-preserving transformations,. Portugal. Math., 51 (1994) 185--204.
  • Garba, G. U. and Imam, A. T., Products of quasi-idempotents in finite symmetric inverse semigroups, Semigroup Forum, 92 (2016), 645--658.
  • Howie, J. M., Idempotent generators in finite full transformation semigroups, Proc. Royal Soc. Edinburgh, 81A (1978), 317--323.
  • Howie, J. M., Fundamentals of Semigroup Theory, New York, Oxford University Press, 1995.
  • Isaacs I. M., Finite Group Theory, American Mathematical Society, Graduate Studies in Mathematics, Volume 92, United States of America, 2008.
Year 2020, Volume: 8 Issue: 1, 25 - 28, 20.03.2020
https://doi.org/10.36753/mathenot.608443

Abstract

References

  • Ay\i k, G., Ay\i k, H., Bugay, L. and Kelekci, O., Generating sets of finite singular transformation semigroups, Semigroup Forum, 86 (2013), 59--66.
  • Bugay, L., Quasi-idempotent ranks of some permutation groups and transformation semigroups, Turk. J. Math., Accepted.
  • Ganyushkin, O. and Mazorchuk, V., Classical Finite Transformation Semigroups, Springer-Verlag, London, 2009.
  • Garba, G. U., Idempotents in partial transformation semigroups, Proc. Royal Soc. Edinburgh, 116A (1990), 359--366.
  • Garba, G. U., On the idempotent ranks of certain semigroups of order-preserving transformations,. Portugal. Math., 51 (1994) 185--204.
  • Garba, G. U. and Imam, A. T., Products of quasi-idempotents in finite symmetric inverse semigroups, Semigroup Forum, 92 (2016), 645--658.
  • Howie, J. M., Idempotent generators in finite full transformation semigroups, Proc. Royal Soc. Edinburgh, 81A (1978), 317--323.
  • Howie, J. M., Fundamentals of Semigroup Theory, New York, Oxford University Press, 1995.
  • Isaacs I. M., Finite Group Theory, American Mathematical Society, Graduate Studies in Mathematics, Volume 92, United States of America, 2008.
There are 9 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Leyla Bugay 0000-0002-8316-2763

Publication Date March 20, 2020
Submission Date August 21, 2019
Acceptance Date March 13, 2020
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Bugay, L. (2020). Some Involutions which Generate the Finite Symmetric Group. Mathematical Sciences and Applications E-Notes, 8(1), 25-28. https://doi.org/10.36753/mathenot.608443
AMA Bugay L. Some Involutions which Generate the Finite Symmetric Group. Math. Sci. Appl. E-Notes. March 2020;8(1):25-28. doi:10.36753/mathenot.608443
Chicago Bugay, Leyla. “Some Involutions Which Generate the Finite Symmetric Group”. Mathematical Sciences and Applications E-Notes 8, no. 1 (March 2020): 25-28. https://doi.org/10.36753/mathenot.608443.
EndNote Bugay L (March 1, 2020) Some Involutions which Generate the Finite Symmetric Group. Mathematical Sciences and Applications E-Notes 8 1 25–28.
IEEE L. Bugay, “Some Involutions which Generate the Finite Symmetric Group”, Math. Sci. Appl. E-Notes, vol. 8, no. 1, pp. 25–28, 2020, doi: 10.36753/mathenot.608443.
ISNAD Bugay, Leyla. “Some Involutions Which Generate the Finite Symmetric Group”. Mathematical Sciences and Applications E-Notes 8/1 (March 2020), 25-28. https://doi.org/10.36753/mathenot.608443.
JAMA Bugay L. Some Involutions which Generate the Finite Symmetric Group. Math. Sci. Appl. E-Notes. 2020;8:25–28.
MLA Bugay, Leyla. “Some Involutions Which Generate the Finite Symmetric Group”. Mathematical Sciences and Applications E-Notes, vol. 8, no. 1, 2020, pp. 25-28, doi:10.36753/mathenot.608443.
Vancouver Bugay L. Some Involutions which Generate the Finite Symmetric Group. Math. Sci. Appl. E-Notes. 2020;8(1):25-8.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.